TEKNIK ANALISIS DATA PENELITIAN

Aplikasi program SPSS dan Teknik Menghitungnya

Disusun Oleh: Ali Sya,ban, M.Pd

Disampaikan Pada Pelatihan Metode Penelitian Hari Selasa, 13 Desember 2005, dilaksanakan di Laboratorium Komputer Universitas Muhammadiyah Prof. Dr. Hamka (UHAMKA) Pasar Rebo, Jakarta Timur

DAFTAR ISI

Halaman

I.	Pendahuluan	1
II.	Analisis Data Kuantitatif	
	a. Statistik Deskripsi Penelitian	4
	1. Penyajian Data	5
	2. Deskripsi Data	5
	b. Analisis Korelasi Antar Variabel	17
	c. Analisis Uji Regresi	24
	1. Uji Regresi Sederhana	
	2. Uji Regresi Ganda	33
	d. Analisis Perbedaan dengan ANOVA	41
	1. ANOVA Satu Arah (1 Faktorial)	42
	2. ANOVA Dua Arah (2 Faktorial)	48
	e. Analisis Perbedaan dengan Nonparametrik	58
	1. Uji Wilcoxon Match Pair Test	58
	2. Analisis Varians Satu Jalan Kruskal-Walls	60
	3. Analisis Varian Dua Jalan Friedman	63
Ш	. Analisis Data Kualitatif	66
	a. Kriteria dan Teknik Keabsahan Data	66
	1. Kredibilitas dan Derajat Kepercayaan	66
	2. Kebergantungan (Dependability)	67
	b. Teknik Analisis Data	68
IV	. Penutup	69

TEKNIK ANALISIS DATA PENELITIAN

I. Pendahuluan

Penelitian adalah merupakan cara ilmiah untuk mendapatkan data dengan tujuan dan kegunaan tertentu. Penelitan itu juga merupakan penelitian yang didasarkan atas ciri-ciri keilmuan, baik secara rasional, empiris, dan sistematis. Rasional artinya kegiatan peneliti itu dilakukan dengan cara-cara yang masuk akal, sehingga terjangkau oleh penalaran manusia. Empiris artinya cara-cara yang digunakan dalam penelitian itu teramati oleh indera manusia, sehingga orang lain dapat mengamati dan mengetahui cara-cara yang digunakan. Sistematis artinya proses yang diguanakan dalam penelitian itu menggunakan langkah-langkah tertentu yang bersifat logis¹.

Pada proses penelitian memerlukan suatu analisis untuk memperoleh kebenaran data. Hasil analisis tersebut dapat ditafsirkan untuk menjawab suatu pemasalahan yang telah dirumuskan, berdasarkan teknik analisis yang telah ditentukan dan sesuai dengan pemasalah yang akan dikaji. Analisis adalah proses menyusun data yang dapat ditafsikrkan. Di mana analisis data merupakan tahap suatu proyek penelitian yang mencoba menjawab pertanyaan, "apa yang telah kita temukan?" dan "apa yang diungkap oleh data?". Kemudian dalam analisis data ini apa yang orang lakukan terhadap *questioner*, wawancara, dokumen, data eksperimen, catatan kancah (lapangan), atau data lain yang dikumpulkan selama berlangsungnya proyek penelitian. Analisis ini biasanya dikerjakan setelah selesai pengumpulan data, sebagai penulisan dan pelaporan hasil penelitian.

Teknik analisis data untuk penelitian terbagi menjadi dua macam metode, yaitu analsis data secara kuatitatif dan analisis data secara kualitatif. Kedua metode penelitian tersebut, baik kuatitatif dan kualitatif memiliki teknik analisis data yang berbeda. Penelitian kuatitatif adalah penelitian yang dikemukakan dengan hipotesis yang diturunkan dari suatu teori dan kemudian diuji kebenarannya berdasarkan data empiris, sedangkan penelitian kuliatatif

¹ Sugiyono. (2000)

adalah penelitian yang bersifat *naturalistic* yang dikumpulkan dari empiris, kemudian dari data tersebut ditentukan pola atau tema (adanya penemuan atau *discovery*) dan dikembangkan menjadi suatu teori.

Pada penelitian kualitaitf bersifat "induktif" (dari khusus ke umum) dan kuatitatif bersifat "deduktif" (dari yang umum ke khusus). ²Perbedaan kedua metode penelitan tersebut dapat dijelaskan secara skematis berikut ini,

Metode Kualitatif	Metode Kuantitatif
 Desain: Umum Fleksibel Berkembang tampil dalam proses penelitian 	 Desain: Spesifik, jelas, terinci Ditentukan sejak awal Menjadi pegangan langkah demi langkah
 Tujuan: Memperoleh pemahaman Mengembangkan teori Mengembangkan realitas yang komplek 	 Tujuan: Menunjukkan hubungan antara variabel Mentes toeri Mencari generalisasi yang mempunyai nilai prediktif
 Teknik penelitian: Observasi, participant observation Wawancara terbuka 	 Teknik penelitian: Eksperimen, survey, observasi berstruktur Wawancara berstuktur
 Instrumen penelitian: Peneliti sebagai instrument (<i>human instrument</i>) Buku catatan, <i>tape recorder</i>, kamera 	 Instrumen penelitian: Test, angket, wawancara tertutup, skala Alat hitung berupa: komputer, kakulator
 Data: Deskripsi kualitatif Dokumen pribadi, catatan lapangan, ucapan atau perkataan responden, dokumen, dan lain-lain 	 Data: Deskripsi kuatitatif Hasil pengukuran berdasarkan variabel yang dioprasionalkan dengan menggunakan instrumen

² Nasution. (1988)

Sampel:	Sampel:
• Kecil	• Besar
• Tidak representatif	• Representatif
• Purposif (ditentukan)	• Sedapat mungkin digunakan
	random (acak)
Analisis:	Analisis:
• Terus menerus sejak awal	• Pada taraf akhir setelah
sampai akhir penelitian	pengumulan data selesai
• Induktif	• Deduktif
• Mencari pola, model, thema	• Menggunakan hitungan statistik
(discovery)	
Hubungan dengan responden:	Hubungan dengan responden:
• Empati, akrab	• Berjarak sering tanpa kontak
1 /	langsung
• Kedudukan sama, setaraf	• Hubungan antara peneliti
	langsung kepada subjek
	penelitian
• Jangka lama	• Jangka pendek
e	
Usulan Desain:	Usulan Desain:
• Singkat	• Luas dan terinci
• Literatur (terfokus hanya	• Banyak literatur yang
menggunakan satu variabel	berhubungan dengan varibel
yang diungkap)	(menggunakan lebih dari satu
	varibel)
• Pendekatan secara umum	• Prosedur yang terspesifik dan
	terinci langkah-langkahnya
• Masalah yang diduga relevan	• Masalah diuraikan dan
	dituiukan kepada fokus tertentu
• Tidak memiliki hipotesis	Hipotesis dirumuskan dengan
	ielas
• Fokus penelitian sering ditulis	• Ditulis terinci dan lengkan
setelah ada data vang	sebelum teriun ke lanangan
dikumpulakan dari lapangan	

II. Analisis Data Kuatitatif

Analisis data untuk penelitian kuatitatif lebih banyak mengarah kepada perhitungan dengan statistik. Statistik mualnya digunakan oleh Gottfriet Achmenwall (1719 – 1772). Setelah itu, oleh Dr. E. A. W. Zimmeran memperkenalkan kata statistik ke negeri Inggris, yang selanjutnya kata statistik itu dipopulerkan oleh Sir Jhon Sinclaer sampai sekarang.

Secara etimologi kata statistik berasal dari bahasa Italia "*statista*" yang berarti negarawan atau ahli kenegaraan, karena sejak dahulu kala statistik hanya digunakan untuk kepentingan negara saja. Kemudian, ditinjau dari terminologi, statistik memiliki beberapa pengertian, yaitu:

- 1. Statistik sebagai data, yaitu kumpulan bahan keterangan yang berupa angka atau kumpulan angka yang menunjukkan tentang kegiatan hidup tertentu mengenai keadaan, peristiwa atau gejala tertentu.
- 2. Statistik sebagai kegiatan, yaitu proses kegiatan statistik yang dimulai dari pengumpulan data, penyusunan data, pengumuman dan pelaporan data serta analisis data.
- 3. Statistik sebagai metode, yaitu cara-cara tertentu yang digunakan dalam mengumpulkan, menyusun atau mengatur, menyajikan, menganalisis dan memberi interprestasi terhadap sekumpulan data, sehingga kumpulan bahan keterangan itu dapat memberi pengertian dan makna tertentu.
- 4. Statistik sebagai ilmu, yaitu ilmu pengetahuan yang membahas dan mengembangkan prinsip-prinsip, metode dan prosedur yang ditempuh dalam hal: pengumpulan data, penyusunan atau pengaturan data angka, penyajian data angka, analisis terhadap data, pengambilan keputusan³.

a. Statistik Deskripsi Penelitian

Pada saat penyusunan data ke dalam laporan memerlukan deskripsi data penelitian dari hasil pengumpulan data yang telah diperolehnya di lapangan, di mana perhitungannya dilakukan dengan statistik untuk mengetahui statistik deskriptifnya. Statistik deskriptif adalah statistik yang berfungsi untuk mendeskripsikan atau memberi gambaran terhadap obyek yang diteliti melalui data sampel atau populasi sebagaimana adanya dan membuat kesimpulan yang berlaku untuk umum⁴.

³ Hartono. (2004)

⁴ Sugiyono (200)

Statistik deskriptif ini yang dikemukakan dalam bentuk laporan adalah cara-cara penyajian data melalui tabel maupun distribusi frekuensi. Setelah itu disajikan dalam bentuk berbagai diagram, seperti: grafik garis maupun batang, diagram lingkaran, dan histogram. Ataupun penjelasan kelompok dari distribusi frekuensi dengan mencari dan menghitung mean, median, modus, standar deviasi, *skewness*, kurtosis, *varians*. Pehitungan tersebut dilakukan untuk mengetahui tingkat kecenderungan data.

1. Penyajian Data

Seorang peneliti harus dapat menyajikan data yang telah diperolehnya dari hasil selama penelitiannya di lapangan, baik yang diperoleh melalui observasi, wawancara, *questioner* (angket) maupun dari dokumentasi. Penyajian data ini adalah data yang telah disajikan dalam bentuk deskripsi atau gambaran tentang data yang dapat dipahami oleh fihak lain untuk membaca.

2. Deskripsi Data

Pada tahap penyusunan deskripsi data dari hasil data yang telah terkumpul dilakukan pengelompokan data, dengan cara mencari kelas interval dan batas kelas, hal ini dilakukan dengan rumus *Struges*:

K=1+3,3 Log.nK= Jumlah kelas intervalN= Jumlah dataLog.= Logaritma

Contoh, pengelolaan data statistik deskriptif:

Hasil data dari perolehan angket skala *likert* dengan lima alternatif jawaban Sangat Setuju (SS) = 5, Setuju (S)= 4, Ragu-ragu (RR)= 3, Kurang Setuju (KS)= 2, Tidak Setuju (TS)= 1. Hasil akhir skala likert tersebut dijumlahkan dan dimasukan sesuai dengan variabel masing-masing dengan

jumlah butir pernyataan 15 dengan jawaban nilai terkecil $1 \times 15 = 15$, dan jawaban nilai tertinggi 75. Dengan demikian, contoh dari jumlah pemilih responden dapat disajikan dalam bentuk berikut ini:

No. Urut	v	Variabe	l
Responden	X ₁	X ₂	Y
1	47	17	37
2	72	18	69
3	59	20	70
4	50	20	35
5	60	25	71
6	70	20	72
7	50	22	40
8	65	13	40
9	54	30	69
10	57	28	68
11	50	13	38
12	72	17	56
13	68	30	57
14	63	19	58
15	60	18	55
16	58	22	56
17	68	20	57
18	74	26	62
19	57	20	50
20	47	30	50
Jumlah	1201	428	1110
Skor terkecil	47	13	35
Skor terbesar	74	30	72

Setelah data terkumpul dan sudah dijumlah berdasarkan jumlah butir pernyataan pada angket, maka langkah selanjutnya membuat distribusi frekuensi dengan mencari batas kelas dan interval kelas, serta titik tengah. Mencari batas kelas sebagaimana telah disajikan rumus pada rumus *struges* di atas, 1+ 3,3 log. N.

N = 20 responden di logaritmakan (Log. 20= 1,301029996) Maka, 1 + 3,3 (1,301029996)= 5,293398986 dibulatkan 5 Batas kelas= 5

Setelah itu mencari interval kelas, yaitu:

 $\frac{\text{Skor terbesar - Skor terkecil}}{\text{Batas kelas}} = \text{Interval kelas}$ jadi $\frac{74 - 47}{5,29} = 5,10$ dibulatkan 5

Jika dalam penyusunan interval batas kelasnya melebihi batas yang ditentukan, maka batas kelas dapat ditambah 1 (batas kelas= 5 + 1 = 6). Kemudian, dimasukan ke dalam distribusi frekuensi untuk variabel X₁, yaitu:

Interval Skor Titik tengah Frekuer		Frekuensi	Persentase (%)	Kumulatif
47 – 51	49	5	25	25
52 - 56	54	1	5	30
57 - 61	59	6	30	60
62 - 66	64	2	10	70
67 - 71	69	3	15	85
72 - 76	74	3	15	100
Jumalah		20	100	

Setelah distribusi frekuensi untuk variabel X_1 terbentuk, maka mencari titik tengah dengan cara (47 + 51)/2 = 49, (52 + 56)/2 = 54, dan seterusnya. Hasil dari distribusi frekuensi harus dibuat diagramnya, seperti dalam hal ini akan mengambil diagram histogram, bisa juga dalam bentuk diagram lainnya.

bisa juga dengan menggunakan diagram line

melalui hasil distribusi frekuensi, maka langkah selanjutnya mencari perhintungan mean, median, dan modus.

Menghitunga mean

Mean (M) =
$$\frac{\sum X}{N} = \frac{1201}{20} = 60,05$$

Menghitung median

Interval Skor	Frekuensi	FK a	FK b
47 – 51	5	5	20
52 - 56	1	6	15
57 - 61	6	12	14
62 - 66	2	14	8
67 - 71	3	17	6
72 - 76	3	20	3
Jumalah	20		

Median (Mdn) = u -
$$\frac{((N/2) - fk_a)}{fi} \times i$$

Interval yang diperoleh = 57 - 61 fi = 6 fk_a = 6 Interval = 5 u = 61 + 0,5 = 61,5 $61,5 - \frac{((20/2) - 6)}{6} \times 5 = 58,17$

cara kedua:

Interval yang diperoleh
$$= 57 - 61$$

fi $= 6$
fk_b $= 8$

Interval = 5
u = 57 - 0,5 = 56,5

$$56,5 + \frac{((20/2) - 8)}{6} \times 5 = 58,17$$

Menghitung modus

Skor	Frekuensi
47	2
50	3
54	1
57	2
58	1
59	1
60	2
63	1
65	1
68	2
70	1
72	2
74	1
Jumlah	20

Modus (Mo)= u +
$$\left[\frac{fa}{fa+fb}\right]$$

Skor terbanyak urutan 50
fa = 3 - 2 = 1
fb = 3 - 1 = 2
u = 50 - 0,5 = 49,5
Mo= 49,5 + $\left[\frac{3-2}{(3-2)+(3-1)}\right]$ = 49.83 dibulatkan 50

Perhitungan standard desviasi

No. Urut Responden	X ₁	X ₂	Y	X1 ²	X2 ²	Y ²
1	47	17	37	2209	289	1369
2	72	18	69	5184	324	4761
3	59	20	70	3481	400	4900
4	50	20	35	2500	400	1225
5	60	25	71	3600	625	5041
6	70	20	72	4900	400	5184
7	50	22	40	2500	484	1600
8	65	13	40	4225	169	1600
9	54	30	69	2916	900	4761
10	57	28	68	3249	784	4624
11	50	13	38	2500	169	1444
12	72	17	56	5184	289	3136
13	68	30	57	4624	900	3249
14	63	19	58	3969	361	3364
15	60	18	55	3600	324	3025
16	58	22	56	3364	484	3136
17	68	20	57	4624	400	3249
18	74	26	62	5476	676	3844
19	57	20	50	3249	400	2500
20	47	30	50	2209	900	2500
Jml	1201	428	1110	73563	9678	64512

Hasil perhitungan dari mean, median dan modus dapat disimpulkan, bahwa mean > median > modus. Dengan demikian, distribusi data untuk variabel X_1 memiliki jumlah positif.

Cara menghitung mean, median dan modus yang dilakukan melalui program SPSS dengan media computer, yaitu:

- 1. Buka program SPSS
- 2. Isi data pada kolom "var" seperti di bawah ini:

	The second in		THE REAL PROPERTY AND					
		1						
- 2	var00001	var00002	Var00003	V/#1	100	S war S	+ 16	4
1	47.00	17.00	37.00					1
2	72.00	18.00	69.00					1
3	59.00	20.00	70.00					8
4	50.00	20.00	35.00					đ
5	60.00	25.00	71.00	(đ
6	70.00	20.00	72.00					ű
7	50.00	22.00	40.00			1		1
8	65.00	13.00	40.00					
9	54.00	30.00	69.00					1
10	57.00	28.00	68.00					1
11	50.00	13.00	38.00					1
12	72.00	17.00	56.00					
13	68.00	30.00	57.00					ſ
14	63.00	19.00	58.00					1
15	60.00	18.00	55.00					ű
16	58.00	22.00	56.00					í
17	68.00	20.00	57.00					1
18	74.00	26.00	62.00					í
19	57.00	20.00	50.00					1
- 20	47.00	20.00	50.00			1		1

Kemudian buka klik "variabel view" akan tampil seperti gambar di bawah ini:

	Name	Туре	Width	Decimals	Label	Values	Missir
1	var00001	Numeric	8	2		None	None
2	var00002	Numeric	8	2		None	None
3	var00003	Numeric	8	2		None	None
5		-					-
6	3						
1			_				
8	-	-	-				-
110							
111							
- 12							
14			-	-			-
-15							
(30							
17							
18			-				
20			_				-

Klik dan rubahlah kalimat "var00001"dengan tulisan "X₁", "var00002" dengan tulisan "X2", dan "var00003" dengan tulisan "Y", maka akan tampil pada "*Data View*" seperti:

📰 Ur	ntitled	- SPSS Data	Editor							_ 8 ×
Eile	<u>E</u> dit	⊻iew <u>D</u> ata	<u>Transform</u> <u>A</u>	nalyze <u>G</u> raphs	Utilities	₩indow	Help			
1		🔍 🕥 🖂	🖾 📴 👭	1 📶 🛅 🏦 🏛	III 🚳	0				
5:										
		$\times 1$	×2	У				Var	Var	<u> </u>
	1	47.00	17.00	37.00						
	2	72.00	18.00	69.00						
	3	59.00	20.00	70.00						
	4	50.00	20.00	35.00						
	5	60.00	25.00	71.00						
	6	70.00	20.00	72.00						
	7	50.00	22.00	40.00						
	8	65.00	13.00	40.00						
	9	54.00	30.00	69.00						
	10	57.00	28.00	68.00						
	11	50.00	13.00	38.00						
	12	72.00	17.00	56.00						
	13	68.00	30.00	57.00						
	14	63.00	19.00	58.00						
	15	60.00	18.00	55.00						
	16	58.00	22.00	56.00						
	17	68.00	20.00	57.00						
	18	74.00	26.00	62.00						
	19	57.00	20.00	50.00						
4 1		View Variak	le View 7	50.00	1				1	
	1.000		SPS	S Processor is re-	adv					
			» BOTCK					0.00	Um 4	2.50.414
200	an		JEN	Expression CX		U	Jua	Outp	-0	3.56 AM

 Mengetahui hasil perhitungan untuk mean, median dan modus, dari "Data View" klik "analyze" pilih "descriptive statistics", kemudian arahkan pada "frequencies", klik.

🖽 Un	titled -	- SPS	S Data I	Editor														8 ×
Eile	<u>E</u> dit	⊻iew	<u>D</u> ata	Transform	nalyze	Graphs	Utili	ties	_₩ine	wok	Help							
1	3 6	92	000	- <u></u>	Report	s		•	A									
5					Descri	ptive Stati	istics	•	Ere	quen	cies							
					Compa	are <u>M</u> eans	в	•	De	script	ives				-		_	1
		>	<1	×2	Genera	al Linear N	vlodel	•	EX	olore.			1	var		var		_==
	1		47.00	17.	Correla	ate		•		sstat	DS							
	2		72.00	18.	Regre:	ssion			Ba	tio								
	3		59.00	20.	Classif	×												
	4		50.00	20.	Data H	eduction												
	5		60.00	25.	Nonna	remotrio -	Footo											- 11
	6		70.00	20.	Multiple	- Rocnon	1000											
	7		50.00	22.	Terojupi	er tespon		· ·										
	8		65.00	13.00		40.00												
	9		54.00	30.00)	69.00												
	10		57.00	28.00		68.00												
	11		50.00	13.00		38.00												
	12		72.00	17.00)	56.00												
	13		68.00	30.00		57.00												
	14		63.00	19.00)	58.00												
	15		60.00	18.00		55.00												
	16		58.00	22.00)	56.00												
	17		68.00	20.00		57.00												
	18		74.00	26.00)	62.00												
	19		57.00	20.00		50.00												
4 F	Data	View	A Variah		1	50.00	_											• Ē
Frequ	encies			SPS	S Proces	ssor is re	ady										-	
St	art] (i 🗹	🗷 🎀	» <u>М</u> ТЕК	Micr	🔯 Ex	:pl	X N	licr	1 ω	nti	fi c	lutp			***	4:00	АМ

Akan tapil menu "frequencies" sebagai berikut:

							 	_
	×1						var	
1	47.	quencies					 1	
2	72.(🔷 📓			ble(s):		OK.		
3	59.(🍼 🕺	2				aste		
4	50.(**				F	leset		
5	60.0							
6	70.0				-			_
7	50.0					Help		_
8	65.(-
9	<u>54.</u> 🔽 Di	play frequency tabl	les					-
10	57.1		laure 1	a 1	I			-
11	30.0		Statistics	Lnarts	Format			-
12	72.00	17.00	56.00		_			-
14	62.00	10.00	57.00				 	-
15	60.00	19.00	55.00		_			-
16	58.00	22.00	56.00		_			-
17	68.00	20.00	57.00					-
18	74.00	26.00	62.00					
19	57.00	20.00	50.00		_			
20	47.00	30.00	50.00				1	
Data V	iew ∕(∨ariable ∨	iew /		•				

kemudian untuk tulisan X_1 , X_2 , dan Y di blok seluruhnya dan klik tanda panah agar pindah ke kolom "*variable(s)*". Setelah X1, X2, dan Y berada pada kolom "*variable(s)*", maka pilih *option "statistics*" dan tampak pada layar sebagai berikut:

Veisbleit Veisbleit Image: Statistic statistat statistat statistic statistic statis statistic statistic statis	Frequencies	ditor		
Provide Based Var Var Var Var Var Based Carcel Heb Carcel Forguencies: Statistics Carcel Forguencies: Statistics Carcel Forguencies: Statistics		⊻ariable(s):		OK Paste
♥ isplay frequency tables Frequencies: Statistics ♥ recardia Values ♥ requencies: Statistics ♥ recardia Values ♥ reca				Beest Var Var Var
Battilitz Dartilitz Frequencies Statistics Central Tendency Central Tendency 8 65:00 13:00 40:00 Image: Central Tendency	Display frequency tables			
8 65.00 13.00 40.00 Image: Constraint of the second		Statistics Charts	Eormat	Percentile Values Central Tendency Continue
9 54.00 30.00 69.00 □ ctp control for 10 equal groups ✓ M dg/an Heb 10 57.00 28.00 68.00 □ Ctp control for 10 equal groups ✓ M dg/an Heb 11 50.00 13.00 38.00 □ Ctp control for 10 F Mg/an Heb ✓ Sum Sum ✓ Values are group midpoints Sum Sum ✓ Values are group midpoints ✓ Skegness ✓ Skegness ✓ Skegness ✓ ✓ Skegness ✓ Skegnes ✓ ✓ <t< td=""><td>8 65.00</td><td>13.00</td><td>40.00</td><td>Quartiles Vean Cancel</td></t<>	8 65.00	13.00	40.00	Quartiles Vean Cancel
10 57.00 28.00 68.00 11 50.00 13.00 38.00 Feerenticity F Mode 12 72.00 17.00 56.00 20.00 57.00 14 63.00 19.00 58.00 Ferromagnetic structure F Mode F Mode 15 68.00 20.00 57.00 Fill deviation F Minimum F Values are group michoints 15 58.00 22.00 56.00 Fill deviation F Minimum F Stegress 17 68.00 20.00 57.00 F Stegress F Stegress F Eutresis 19 57.00 20.00 50.00 Stegress Stegress F Stegress 19 57.00 20.00 50.00 Stegress Stegress F Stegress 19 57.00 20.00 50.00 Stegress Stegress F Stegress 19 57.00 20.00 50.00 Stegress Stegress Stegress 19 57.00 20.00 50.00 Stegress Stegress Stegress 19 <	9 54.00	30.00	69.00	Cut points for 10 equal groups V Megian Help
11 50.00 13.00 38.00 280 12 72.00 17.00 56.00 Clanor ✓ gun 13 68.00 30.00 57.00 Clanor ✓ dues are group midpoints 14 63.00 19.00 58.00 Dispersion ✓ dues are group midpoints 15 58.00 22.00 56.00 ✓ stance ✓ Maginum ✓ Skearees 17 66.00 20.00 57.00 ✓ stance ✓ Maginum ✓ Skearees 13 74.00 26.00 62.00 F Stance ✓ Maginum ✓ Skearees 19 57.00 20.00 50.00 ✓ ✓ Stance ✓ stance 19 57.00 20.00 50.00 ✓ ✓ Stance ✓ 19 57.00 20.00 50.00 ✓ ✓ ✓ ✓ 19 Data View (✓ Variable View ✓ Stance ✓ ✓ ✓	10 57.00	28.00	68.00	Percentile(s): Mode
12 72.00 17.00 56.00 13 68.00 30.00 57.00 14 63.00 19.00 58.00 15 58.00 22.00 56.00 16 58.00 22.00 56.00 17 68.00 20.00 57.00 18 74.00 26.00 62.00 19 57.00 20.00 50.00 10 020.00 50.00 12 Data View (Vanable View) 00.50.00	11 50.00	13.00	38.00	Add 🔽 Sum
13 68.00 30.00 57.00 Benove If Values are group midpoints 14 63.00 19.00 58.00 Dispersion If Values are group midpoints 15 60.00 18.00 55.00 If Second and a second a	12 72.00	17.00	56.00	Change
Im 03:00 19:00 36:00 Dispersion Dispersion <thdispersion< th=""> Di</thdispersion<>	13 68.00	30.00	57.00	Bemove Vajues are group midpoints
11 58.00 22.00 56.00 P' [91 division P Mynum P' Shearnes 11 68.00 20.00 57.00 P' Mynum P' Shearnes P' Livitois 13 74.00 26.00 62.00 Rage F St. mean P' Livitois 19 57.00 20.00 50.00 St. mean St. mean St. mean	15 60.00	19.00	55.00	- Dispersion - Distribution
10 30100 22.00 57.00 If Variance If Maginum If Eurosie 18 74.00 26.00 62.00 If Rage If Stream If Eurosie 19 57.00 20.00 50.00 If Rage If Stream If Eurosie 19 57.00 20.00 50.00 If Stream If Eurosie 10 10 10 10 If Eurosie 11 10 10 10 If Eurosie 12 10 10 10 If Eurosie 13 10 10 If Eurosie If Eurosie	15 58.00	22.00	56.00	Std. deviation V Minimum
15 74.00 26.00 62.00 □ □ Bage □ SE_mean □ Band 19 57.00 20.00 50.00 □	17 68.00	20.00	57.00	✓ ⊻ariance ✓ Magimum
19 57.00 20.00 50.00 ↑ Data View / Variable View / SPSS Processor is ready	18 74.00	26.00	62.00	Range CS.E. mean
SPIS Processor is ready	19 57.00	20.00	50.00	
jSPSS Processor is ready	>∩ 17 00 ▲ ▶ Data View (Variab)	le View	50.00	
🖬 Start 🚯 🚾 💥 🦈 MITEKNI 🖾 Micros 🖓 Explori 🖾 Micros 🛗 Latiti	📾 Start 🛛 🕅 🕅 🕅 🏞	WITEKNI SIM	cros 1 🖎	Explori Micros Hotitt Coutout 4:35 AM

lalu pada menu "*Frequencies: statistics*" untuk *central tendenc*y klik *mean, median, mode* dan *standard deviations*, kemudian klik *continue* dan klik oke, maka akan tampil pada output SPSS sebagai berikut:

Frequencies

Statistics

			X1	X2	Y
Ν	Va	lid	20	20	20
	Mi	ssing	9	9	9
Mean	•		60.0500	21.4000	55.5000
Median			59.5000	20.0000	56.5000
Mode			50.00	20.00	40.00 ^a
Std. Deviation			8.71463	5.22544	12.36932
Variance			75.94474	27.30526	153.00000
Skewness			.043	.360	298
Std. Error of Skewnes	s		.512	.512	.512
Kurtosis			-1.194	637	-1.152
Std. Error of Kurtosis			.992	.992	.992
Minimum			47.00	13.00	35.00
Maximum			74.00	30.00	72.00
Sum			1201.00	428.00	1110.00

a. Multiple modes exist. The smallest value is shown

Frequency Table

			X1		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	47.00	2	6.9	10.0	10.0
	50.00	3	10.3	15.0	25.0
	54.00	1	3.4	5.0	30.0
	57.00	2	6.9	10.0	40.0
	58.00	1	3.4	5.0	45.0
	59.00	1	3.4	5.0	50.0
	60.00	2	6.9	10.0	60.0
	63.00	1	3.4	5.0	65.0
	65.00	1	3.4	5.0	70.0
	68.00	2	6.9	10.0	80.0
	70.00	1	3.4	5.0	85.0
	72.00	2	6.9	10.0	95.0
	74.00	1	3.4	5.0	100.0
	Total	20	69.0	100.0	
Missing	System	9	31.0		
Total		29	100.0		

X2

		_	_		Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	13.00	2	6.9	10.0	10.0
	17.00	2	6.9	10.0	20.0
	18.00	2	6.9	10.0	30.0
	19.00	1	3.4	5.0	35.0
	20.00	5	17.2	25.0	60.0
	22.00	2	6.9	10.0	70.0
	25.00	1	3.4	5.0	75.0
	26.00	1	3.4	5.0	80.0
	28.00	1	3.4	5.0	85.0
	30.00	3	10.3	15.0	100.0
	Total	20	69.0	100.0	
Missing	System	9	31.0		
Total		29	100.0		

			Y		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	35.00	1	3.4	5.0	5.0
	37.00	1	3.4	5.0	10.0
	38.00	1	3.4	5.0	15.0
	40.00	2	6.9	10.0	25.0
	50.00	2	6.9	10.0	35.0
	55.00	1	3.4	5.0	40.0
	56.00	2	6.9	10.0	50.0
	57.00	2	6.9	10.0	60.0
	58.00	1	3.4	5.0	65.0
	62.00	1	3.4	5.0	70.0
	68.00	1	3.4	5.0	75.0
	69.00	2	6.9	10.0	85.0
	70.00	1	3.4	5.0	90.0
	71.00	1	3.4	5.0	95.0
	72.00	1	3.4	5.0	100.0
	Total	20	69.0	100.0	
Missing	System	9	31.0		
Total		29	100.0		

Hasil dari ouput SPSS untuk mean, median dan modus telah diterangkan di atas, untuk lehih jelasnya dapat lihat pada perhitungan mean median dan modus. Setelah menghitung *tendency central*-nya maka untuk mengetahui besarnya persentase kecenderungan data dalam jumlah pemilihan dari responden digunakan kategorisasi data yang terdiri dari: sangat baik, baik, cukup baik, dan kurang baik.

Tingkat kategori ini didasarkan atas acuan kurva normal dengan perhitungan menggunakan mean ideal (Mi) dan standard deviasi ideal (SDi), yaitu:

Untuk Mi = $0.5 \times (\text{skor tertinggi} + \text{skor terkecil})$

 $SDi = 1/6 \times (skor tertinggi - skor terkecil)$

Maka jika dimasukan dalam kategorisasi data adalah sebagai berikut:

Mi + 1,5 SDi <	= Sangat Baik
$Mi \le x < Mi + 1,5 SDi$	= Baik
$Mi - 1,5 SDi \le x \le Mi$	= Cukup Baik
< Mi – 1,5 SDi	= Kurang Baik

Sebagai contoh dari hasil data variabel X_1 di atas, dapat digambarkan tingkat persentase kecenderungan data:

 $Mi = (75 + 15) \times 0, 5 = 45$

 $SDi = (75 - 15) \times 1/6 = 10$

Maka,

Mi (45) + (1,5 SDi (10)) = 60, sehingga dapat ditentukan tingkat kategorinya

Interval skor	Frekuensi	%	Kategori
60 <	8	40	Sangat Baik
$45 \le x < 60$	12	60	Baik
$30 \le x < 45$	0	0	Cukup Baik
< 30	0	0	Kurang Baik
Jumlah	20	100	

Setelah tingkat kecenderungan data disajikan maka dibuat diagram sebagai pengelengkap data untuk mengetahui jumlah banyaknya pemilihan pada setiap butir pernyataan yang telah diperolehnya dari hasil penelitian.

bisa juga menggunakan diagram pie (lingkaran)

b. Analisis Korelasi antar Variabel

Analisis korelasi dalam penelitian dilakukan untuk mengetahui hubungan antar variabel. Selain itu uji korelasi ini dilakukan, jika penelitian mengambil populasi secara keseluruhan yang dijadikkan sebagai sampel penelitian tanpa menggunakan ukuran besarnya sampel. Analisis korelasi ini yang digunakan dalam penelitian biasanya adalah korelasi dari *Product-Moment* dan korelasi parsial.

1. Korelasi Product-Moment

Mencari keofisien korelasi Product-Moment dengan rumus:

$$\mathbf{r}_{xy} = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{(N\sum X^2 - (\sum X^2))(N \cdot \sum Y^2 - (\sum Y)^2)}}$$

Contohnya ingin mengetahui hubungan anatara variabel X dengan Y, yang hopotesisnya adalah "terdapat hubungan yang positif antara variabel X dengan Y".

NI.			Variabel		
NO	Х	Y	XY	X ²	Y^2
1	17	37	629	289	1369
2	18	69	1242	324	4761
3	20	70	1400	400	4900
4	20	35	700	400	1225
5	25	71	1775	625	5041
6	20	72	1440	400	5184
7	22	40	880	484	1600
8	13	40	520	169	1600
9	30	69	2070	900	4761
10	28	68	1904	784	4624
11	13	38	494	169	1444
12	17	56	952	289	3136
13	30	57	1710	900	3249
14	19	58	1102	361	3364
15	18	55	990	324	3025
16	22	56	1232	484	3136
17	20	57	1140	400	3249
18	26	62	1612	676	3844
19	20	50	1000	400	2500
20	30	50	1500	900	2500
Jml	428	1110	24292	9678	64512

ΣΧ	= 428	$\Sigma Y^2 = 64512$
ΣΥ	= 1110	$\Sigma XY = 24292$
ΣX^2	= 9678	N = 20

Selanjutnya data yang diperoleh dimasukan ke dalam rumus:

$$r_{xy} = \frac{20 \times 24292 - (428)(1110)}{\sqrt{\left[20 \times 9678 - (428)^2\right]}\left[20 \times 64512 - (1110)^2\right]}}$$

$$r_{xy} = \frac{485840 - 475080}{\sqrt{\left[193560 - 183184\right]}\left[1290240 - 1232100\right]}}$$

$$r_{xy} = \frac{10760}{\sqrt{10376 \times 58140}}$$

$$r_{xy} = \frac{10760}{\sqrt{603260640}} = \frac{10760}{24561,36478} = 0,438086405$$

$$r_{xy} = 0,438 \text{ dibulatkan } 0,44$$

 r_{xy} = 0,44 jika dibandingkan dengan r_{tabel} dengan taraf signifikansi 5% (0,05)= 0,44 adalah $r_h = r_t$, maka dapat dikatakan bahwa "antara varibel X dengan Y memiliki hubungan positif yang lemah atau rendah". Atau bisa juga tidak terdapat hubungan antara X dengan Y.

Cara menghitung menggunakan program SPSS adalah sebagai berikut:

• Buka program SPSS dan masukan data dalam kolom "Var", kemudian Var ganti dengan X dan Y hasil tampilan pada layar

		17		Contraction of Contra				-
1	x	v I	MOD		V.W.	NW.	A NUMBER	ñ
1	17.00	37.00		10		0		T
2	18.00	69.00						t
3	20.00	70.00				-		t
4	20.00	35.00						1
5	25.00	71.00						1
6	20.00	72.00						8
7	22.00	40.00						1
8	13.00	40.00						1
9	30.00	69.00						1
10	28.00	68.00						1
11	13.00	38.00						1
12	17.00	56.00						1
13	30.00	57.00						1
14	19.00	58.00						1
15	18.00	55.00						1
16	22.00	56.00		12 8				1
17	20.00	57.00						1
18	26.00	62.00						1
19	20.00	50.00						1
201	20.00	50.00		1004				æ

• Langkah selanjutnya pilih menu "*analyze*" lalu arahkan pada "*correlate*" dan klik "*bivariate*", pada layar akan terlihat seperti ini,

🗰 Untitle	d - SPSS Data	Editor								_ 8 ×
<u>F</u> ile <u>E</u> d	lit ⊻iew <u>D</u> ata	Transform A	nalyze <u>G</u> raphs	Utilities	_₩ir	dow <u>H</u> elp				
🗃 🖬 é	3 🔍 🖍 🖂	🖂 🔚 🗗	Reports	•	0					
1:x		17	Descriptive Stati	istics 🕨						
J	1		Compare Means	s 🕨			_	_		
	×	У	General Linear N	Aodel 🕨		Var	va	r	var	
	1 17.00	37.	Correlate			variate				
	2 18.00	69.	Classify		Di	stencoc				_
	3 20.00	/0.	Date Roduction			storices				
	4 20.00	35.	Scale				_			
	5 25.00	71.	Nonparametric 7	Fests 🕨	-		_			
	<u>5</u> 20.00	12.	Multiple Respon	se 🕨	-		_			
	/ 22.00	40.			_		_			
	8 13.00 0 20.00	40.00					_			
	9 30.00	69.00					_			
1	1 12.00	38.00					_			
1	1 13.00	56.00								
1	3 30.00	57.00					_			+
1	4 19.00	58.00					_			+
1	5 18.00	55.00								+
1	6 22.00	56.00								+
1	7 20.00	57.00								+
1	8 26.00	62.00								+
1	9 20.00	50.00								
200	مممع يأه	50.00								
♦ Da	ita View (Vanat	ble View /	Durante		_					•
pivariate		SPSS	Processor is rea	ady		1			1	
Start 8) 🔍 🖬 📧 🎌	* Explori	. 🖾 teknik 🐱]TEKNI	M	licros 🛗 U	ntitl		12	8:56 AM

• Setelah memilih option bivariate, maka akan tampil

 Lalu masukan "X" dan "Y" ke kolom variable(s) dengan mengklik tanda panah. Setelah itu pada menu "correlate coefficient" pilih "pearson", dan pada "tes of significance" pilih "two-tailed" lalu klik oke, pada layar seperti ini,

			Biya	rinte Correla	lions		×
1			-			Variables	
	×	Y	- 1			(A K	OK
1	17.00	37.00				(y	Paste
2	18.00	69.00			1000	24230111	Beact
3	20.00	70.00					Carrol
4	20,00	35.00					Caller
5	25,00	71.00	_				Help
6	20,00	72,00	- Corela	ton Coefficients			
7	22.00	40.00	Pea	roon E Kend	d's taub	C Speaman	
8	13.00	40.00	Section 2	Fire Forest			
9	30,00	69.00	- 6	Signicance	C 0m	1314	
10	28.00	68.00	100.20	Two rated	• 000	- and -	and the second second
11	13.00	38.00	F Elog	ignicant corelati	ons		Options
12	17.00	56.00	ALCORE PAGE		335.0		
13	30.00	57.00					
14	19.00	58.00		1		1	
15	18.00	55.00					1
16	22.00	56.00					
17	20.00	57.00					
18	26.00	62.00					
19	20.00	50.00					
100	20.00	50.00					

hasil output SPSS adalah

Correlations

Correlations

		Х	Y
Х	Pearson Correlation	1	.438
	Sig. (2-tailed)		.053
	N	20	20
Y	Pearson Correlation	.438	1
	Sig. (2-tailed)	.053	
	N	20	20

Hasil Outpun SPSS tidak ditunjukkan r tabel melainkan dengan sig. atau p = 0,05 maka untuk mengetahui hasilnya adalah r_{xy} = 0,438; p = 0,05 adalah sama atau lebih besar dari sig. "=" ">" 0,05 (p > 0,05) atau tidak signifikan. Dengan demikian penafsirannya "antara varibel X dengan Y memiliki hubungan positif yang lemah atau rendah"

2. Korelasi Parsial

Korelasi parsial digunakan untuk menghitung data melebihi dari satu variabel, seperti: variabel bebas *independent* X1 dan X2 "dengan" atau "mempengaruhi" varibel *dependent* "Y". Adapun rumus korelasi parsial untuk tiga varibel adalah sebagai berikut:

• 1. Korelasi parsial Y dengan X₁ dikontrol oleh X₂

$$\mathbf{r}_{y1.2} = \frac{r_{yx1} - r_{yx2} \cdot r_{x1x2}}{\sqrt{1 - r_{yx2}^2 \sqrt{1 - r_{x1x2}^2}}}$$

• 2. Korelasi parsial Y dengan X₂ dikontrol oleh X₁

$$r_{y2.1} = \frac{r_{yx2} - r_{yx1} \cdot r_{x1x2}}{\sqrt{1 - r_{yx1}^2 \sqrt{1 - r_{x1x2}^2}}}$$

Contoh data:

No		Variabel	
110	X ₁	X ₂	Y
1	47	17	37
2	72	18	69
3	59	20	70
4	50	20	35
5	60	25	71
6	70	20	72
7	50	22	40
8	65	13	40
9	54	30	69
10	57	28	68
11	50	13	38
12	72	17	56
13	68	30	57
14	63	19	58
15	60	18	55
16	58	22	56
17	68	20	57
18	74	26	62
19	57	20	50
20	47	30	50
Jml	1201	428	1110

Sebelum melakukan perhitungan korelasi parsial, maka terlebih dahulu melakukan perhitungan koefisien korelasi silang, dalam hal ini dilakukan langsung dengan perhitungannya menggunakan program SPSS

Variabel	Y	X_1	X2
Y	1	0,541	0,438
X1	0,541	1	-0,074
X ₂	0,438	-0,074	1

Hasil koefisien korelasi silang adalah:

r Y X ₁	= 0,541
r Y X ₂	= 0,438
r X1 X2	= -0,074

Setelah itu menghitung dari setiap rumus korelasi parsial, dalam hal ini akan dihitung korelasi parsial X1 dengan X2 di kontrol oleh Y

$$r_{y1,2} = \frac{r_{yx1} - r_{yx2} \cdot r_{x1x2}}{\sqrt{1 - r^2} \cdot r_{y,x2} \cdot \sqrt{1 - r^2} \cdot r_{x1x2}}$$

$$r_{y1,2} = \frac{0,541 - 0,438 \times -0,074}{\sqrt{1 - 0,438^2} \sqrt{1 - (-0,074)^2}}$$

$$= \frac{0,541 - (-0,032412)}{\sqrt{1 - 0,191844} \sqrt{1 - 0,005476}}$$

$$= \frac{0,573412}{\sqrt{0,808156} \sqrt{0,994524}} = \frac{0,573412}{\sqrt{0,808156} \times 0,997258}}$$

$$= \frac{0,573412}{\sqrt{0,80594}} = \frac{0,573412}{0,89774174} = 0,638727125$$

Hasil korelasi parsial $r_{y1,2}=0,638$, maka jika dibandingkan dengan r tabel dengan taraf signifikansi 5% (0,05)= 0,444, r parsial > r tabel. Dengan demikian "terdapat hubungan yang signifikan antara variabel X₁ dengan Y", dan untuk seterusnya menghitung korelasi parsial X₂ dengan Y ikuti sesuai dengan rumus korelasi parsial di atas. Kemudian, dalam menghitung menggunakan program SPSS, yaitu buka program SPSS masukkan data pada kolom "Var"

kemudian pilih analyze arahkan kepada correlate dan pilih partial klik

setelah itu masukan Y dan X_1 pada kolom *variables* serta X_2 pada kolom *controlling for,* ikuti seperti gambar di atas, lalu klik oke, maka akan terlihat hasil *output* SPSS untuk korelasi parsial Y dengan X_1 di kontrol oleh X_2 ,

Hasil dari output korelasi parsial untuk Y dengan X1 dikontrol oleh X2 yaitu $r_{y1,2}$ = 0,639; p= 0,003 lebih kecil dari p<0,05, maka "terdapat hubungan yang signifikan antara varibel X₁ dengan Y".

c. Analisis Uji Regresi

Uji Regresi dilakukan untuk mengetahui pengaruh atau dampak antara varibel *independent* terhadap variabel *dependent*, maka dalam penggunaan analisis ini uji regresi ini dalam pengambilan sampel penelitian dari banyaknya populasi yang ada harus menggunakan **ukuran besaran sampel**. Selain itu, dalam menguji atau menggunakan uji regresi ini harus melalui **persyaratan analisi regresi** biasanya sering disebut dengan "Asumsi Klasik". Uji asumsi klasik ini terdiri dari **Normalitas**, **lineritas**, **multikolinearitas**, dan **homosedatisitas**⁵. Di mana dalam uji asumsi klasik ini

⁵ Kleinbaum & Kuper. (1998)

banyak cara atau rumus untuk digunakannya oleh pengguna uji regresi, agar persyaratan analisisnya dapat dipenuhinya.

Pada materi ini untuk persyaratan analisis regesi hanya menggunakan uji Normalitas dan Uji Linearitas yang sering dilakukan oleh para peneliti untuk persyaratan uji regresi. Akan tetapi pada persyatan analisis ini hasil analisisnya langsung menggunakan program SPSS, maka cara mengoprasionalkan program SPSS untuk uji persyartan analisis regresi adalah sebagai berikut:

1) Uji Normalitas

Menguji normalitas digunakan rumus dari Kolmogorov-Smirnov,dari "*analyze*" pilih "*Nonparametric Tests*" lalu arahkan pada "*1-sample K-S*", maka akan terlihat pada layar

🛗 latihan -	- SPSS Data E	ditor						_ 8 ×
<u>File</u> dit	<u>View</u> <u>D</u> ata	<u>Transform</u> <u>An</u>	alyze <u>G</u> raphs	Utilities Win	idow <u>H</u> elp			
28	1 🔍 🗠 🖂 🛛	🗐 🔚 📴 🏘	<u>* č = 1</u>	<u> </u>				
13:y		57						
	×1	×2	У		var	Var	var	
1	47.00	17.00	37.00					
2	72.00	18.00	69.00					
3	59.00	20.00	70.00	0 i T i		E STA		
4	50.00	One-Sample	Kolmogorov-	Smirnov Test		×		
5	60.00		<u>F</u>	est Variable List:	(эк 📔		
6	70.00			€y Alan	P	aste		
7	50.00			▼[x1]				
8	65.00				<u><u> </u></u>	eset		
9	54.00				Ca	ncel		
10	57.00				H	lelp		
11	50.00							
12	72.00	Test Distribution-						
13	68.00	✓ Normal	🔲 Uniform					
14	63.00	🗖 Pojsson	Exponentia					
15	60.00				Dption	IS		
16	58.00	22.00	56.00					
17	68.00	20.00	57.00					
18	74.00	26.00	62.00					
19	57.00	20.00	50.00					
20	مم جم	30.00	50.00				1	
<u>▼</u> }\Dat	a View (Variab	le View /	Deserves in a					
		SPSS	Processor is re	ady			1.17	
Start	🔍 👿 🖾 🏸	* Q Exploring	1 💌 teknik an		🔚 Output1 -	🔣 Microsoft		3:13 PM

masukan variabel X₁, x2 dan Y pada kolom "*test variable list*", pada "*test distributions*" pilih "*Normal*" lalu klik oke, maka akan tampil hasil output SPSS.

NPar Tests

		Y	X1	X2
Ν		20	20	20
Normal Parameters ^{a,b}	Mean	55.5000	60.0500	21.4000
	Std. Deviation	12.36932	8.71463	5.22544
Most Extreme	Absolute	.145	.126	.206
Differences	Positive	.145	.126	.206
	Negative	144	119	100
Kolmogorov-Smirnov Z	.648	.562	.920	
Asymp. Sig. (2-tailed)		.795	.911	.366

One-Sample Kolmogorov-Smirnov Test

a. Test distribution is Normal.

b. Calculated from data.

Hasil output SPSS untuk uji nermalitas dapat dilihat pada hasil "*Kolmogorov-Smirnov*" dan juga hasil "*Asymp.Sig. (2-tailled)*", maka untuk mengetahui normal atau tidaknya suatu data dapat dilihat dari hasil "*Asymp.Sig. (2-tailled)*" dengan taraf signifikansi 5% (0,05). Jika hasil sig. tersebut lebih besar dari 0,05 maka distribusi data normal (p>0,05), jika sig. lebih kecil dari 0,05 maka distribusi tidak normal (p>0,05)⁶. Adapun hasil signifikansi untuk "*Asymp.Sig. (2-tailled)*" semuanya lebih besar dari 0,05, maka distribusi data telah normal. Hasil ini dapat dituliskan sebagai berikut

1) Variabel Y, K-S= 0,648; p= 0,795 (p > 0,05), maka distribusi Normal

2) Variabel X₁, K-S= 0,562; p= 0,911 (p > 0,05), maka distribusi Normal

3) Variabel X₁, K-S= 0,920; p= 0,366 (p > 0,05), maka distribusi Normal

2) Uji Linearitas

Menguji linearitas melalui program SPSS melalui "**Data Editor** "arahkan pada menu "*analyze*" pilih "*compare mean*" lalu pilih "*mean*" klik

⁶ Siegel. (1995).

	u 20 B	1 <u>- </u> [7	Reports Descriptive Statistics	: 0	0				
2:			Compare Means	•	Means	-		ę	
1	×1	×2	General Linear Mode	1	One-Sa	mpleTTe	ot.	Var	
1	47.00	17.	Correlate	٠	Indepe	ndent-Sam	ples T Test	1	
2	72.00	18.	Begression		Eaired	Samples 1	l Test	6	
3	59.00	20.1	Classity		Qne-W	ay ANOVA			
4	50.00	20,	Data Reduction					1	
5	60.00	25,	Scale				1		
6	70.00	20.	Nonparametric Test						
7	50.00	22.	Multiple Response						
8	65.00	13.00	40.00						
9	54.00	30.00	69.00						
10	57.00	28.00	68.00						
11	50.00	13.00	38.00						
12	72.00	17.00	56.00						
13	68.00	30.00	57.00						
14	63.00	19.00	58.00						
15	60.00	18.00	55.00						
16	58.00	22.00	56.00						
17	68.00	20.00	57.00						
18	74.00	26.00	62.00						
19	57.00	20.00	50.00						
Inc.	17.00	30.00	50.00	1040		-			110

akan tampil sebagai berikut

🗰 latihan	- SPSS Data Ed							_ 2 3
<u>E</u> ile <u>E</u> di	t <u>∨</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> na	lyze <u>G</u> raphs	<u>U</u> tilities <u>W</u> in	dow <u>H</u> elp			
B	i 💷 🖂 💷	ः 🔚 🗗 🚧	*[首] 田山	III 🗟 🎯 📗				
9:								
J							and low	-
	47.00	Means						
	47.00			Deper	ident List:	0	к ——	
	72.00 F0.00	_		(∲ y		Pa	ste	
	59.00	_						
	60.00	_					iset	
	70.00	_		Pregious Layer	1 of 1 <u>N</u> ext	Car	hcel	
	2 70.00	_				- H	elp	
	65.00	_		Indep	endent List:			
	54.00	_			-			_
10	57.00	— I		- I*-	· ·	Uption	18	
1	50.00					<u> </u>		
10	72.00	17.00	56.00					
13	68.00	30.00	57.00					
14	63.00	19.00	58.00					
15	60.00	18.00	55.00					
16	58.00	22.00	56.00					
17	68.00	20.00	57.00					
18	74.00	26.00	62.00					
19	57.00	20.00	50.00					
	ممجم را	30.00	50.00					
Ua-	ta view A Variabi	e view /	Nanagar is too					
		ISPSS F	rocessor is rea					
Start		* S Exploring	Miteknik an	letiben	La Output1 -	Microsoft		3:40 PM

pada menu "*means*" untuk kolom *dependent* list isi varibel Y dan untuk kolom *independent* masukan variabel X₁ dan X₂, setelah itu klik *options* akan tampil menu "*means* : *options*", kemudian pada "*statistic for fist layer*" pilih "*test for linearity*" setelah itu klik "*continue*" dan Oke

in latihan - Filo Edit Mear	SPSS Data El View Data 18	Bitor Transform ∆ook ♥ y Presious Layer 1 ■ ● st ● st ● st	of 1 Next	I Milifiae V	OK Paste Beset Beset Cons: Options Statistics: Median Stat. Error of Mean Sum Minimum	Var	r Var Eeli Statistics: Mean Number of Cases Standard Deviation	
8	65.00	13.00	40.00		Range			
9	54.00	30.00	69.00		Last			
10	57.00	28.00	68.00		Variance			
11	50.00	13.00	38.00		Std. Error of Kurtosis-			
12	72.00	17.00	56.00		Skewness Std. Error of Skewne			
13	68.00	30.00	57.00		Harmonic Mean 📃 💌			
14	63.00	19.00	58.00		Statistics for First Layer			
15	60.00	18.00	55.00		Anova table and et	3		
16	58.00	22.00	56.00		Test ion linearity			
17	68.00	20.00	57.00		Continue	Cancel	Help	
18	74.00	26.00	62.00					
19	57.00	20.00	50.00					
	17.00	30.00	50.00					-
Vala	view A vanabi	SPSS P	ocassor is raac	6v				
Start	a 🖬 🛛 🎀 -	Exploring	🕲 teknik an	latiha	n 🛗 Output1	🛛 💌 Mic	crosoft	3:48 PM

Hasil output SPSS

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Y * X1	Between	(Combined)	2435.333	12	202.944	3.012	.076
	Groups	Linearity	850.034	1	850.034	12.615	.009
		Deviation from Linearity	1585.300	11	144.118	2.139	.161
	Within Groups		471.667	7	67.381		
	Total		2907.000	19			

Y * X2

ANOVA Table

			Sum of Squares	df	Mean Square	F	Sig.
Y * X2	Between	(Combined)	1387.033	9	154.115	1.014	.487
	Groups	Linearity	557.911	1	557.911	3.671	.084
		Deviation from Linearity	829.123	8	103.640	.682	.700
	Within Groups		1519.967	10	151.997		
	Total		2907.000	19			

Hasil uji linearitas melalui program SPSS dapat dilihat pada kolom linearity dan deviation from linearity di atas. Di mana pada hasil linearity untuk sig. adalah 0,084 dan deviation from linearity sig. 0,700. Jika signifikansi untuk linearity di bawah 0,05 (p < 0,05) dan deviation from linearity lebih besar dari 0,05 (p > 0,05) maka data tersebut linear dan dapat dilanjutkan untuk uji regresi⁷. Hal ini dapat dituliskan sebagai beriku:

1) Varibel Y dengan X₁

Model	F hitung	Sig.	Keterangan
Linearity	12,615	0,009 (p < 0,05)	Linear
deviation from linearity	2,139	0,161 (p > 0,05)	Linear

2) Variabel Y dengan X2

Model	F hitung	Sig.	Keterangan
Linearity	3,671	$0,084 \ (p > 0,05)$	Tidak Linear
deviation from linearity	0,682	0,700 (p > 0,05)	Linear

⁷ Sudjana. (1996)

Analisis uji regresi yang digunakan dalam penelitian terdapat dua model regresi, yaitu: 1) Uji regresi sederhana antara variabel X dengan Y. Disamping itu, uji regresi sederhana ini bisa menjadi bisa dijadikan sebagai uji linearitas dalam persyaratan analisis regresi; 2) Uji regresi ganda, di mana untuk variabel *independent* lebih dari satu dan mempengaruhi variabel *dependent* (Y).

1. Uji Regresi Sederhana

Setelah dilakukan uji persyaratan analisis regresi (Asumsi Klasik), langkah selanjutnya menghitung uji regresinya dengan rumus: $\hat{Y} = a + bx$ Kemudian untuk Koefisien regresi linearnya a dan b, dihitung dengan rumus:

$$a = \frac{\left(\sum Y\right)\left(\sum X^{2}\right) - \left(\sum X\right)\left(\sum XY\right)}{n\sum X^{2} - \left(\sum X\right)^{2}}$$
$$b = \frac{N\sum XY - \left(\sum X\right)\left(\sum Y\right)}{N\sum X^{2} - \left(\sum X\right)^{2}}$$

Contoh data:

No	Variabel						
INO	Х	Y	XY	X ²	Y^2		
1	47	37	629	289	1369		
2	72	69	1242	324	4761		
3	59	70	1400	400	4900		
4	50	35	700	400	1225		
5	60	71	1775	625	5041		
6	70	72	1440	400	5184		
7	50	40	880	484	1600		
8	65	40	520	169	1600		
9	54	69	2070	900	4761		
10	57	68	1904	784	4624		
11	50	38	494	169	1444		
12	72	56	952	289	3136		
13	68	57	1710	900	3249		
14	63	58	1102	361	3364		
15	60	55	990	324	3025		
16	58	56	1232	484	3136		
17	68	57	1140	400	3249		
18	74	62	1612	676	3844		
19	57	50	1000	400	2500		
20	47	50	1500	900	2500		
Jml	1201	1110	24292	9678	64512		

ΣΧ	= 1201	ΣY^2	= 64512
ΣX^2	= 73563	ΣΧΥ	= 67763
ΣΥ	= 1110	Ν	= 20

Pertama menghitung rumus b=
$$\frac{N\sum XY - (\sum X)(\sum Y)}{N\sum X^2 - (\sum X)^2}$$

b = $\frac{20 \times 67763 - (1201)(1110)}{20 \times 73563 - (1201)^2}$
= $\frac{1355260 - 1333110}{1471260 - 1442401}$
= $\frac{22150}{28859}$ = **0**,7675524862 dibulatkan **0**,768
kedua mencari rumus a= $\frac{(\sum Y)(\sum X^2) - (\sum X)(\sum XY)}{n\sum X^2 - (\sum X)^2}$
a = $\frac{(1110)(73563) - (1201)(67763)}{20 \times 73563 - (1201)^2}$
= $\frac{81654930 - 81383363}{1471260 - 1442401}$
= $\frac{271567}{28859}$ = **9**,410132021 dibulatkan **9**,41
bisa juga mencari rumus "a" dengan rumus a= $\frac{\sum Y - b(\sum X)}{N}$
A= $\frac{1110 - 0.76752(1201)}{20}$

Sehingga ditulis dalam persamaan regresi liniernya adalah:

$\hat{Y}=9,41 a + 0,768 b$

20

20

Setelah diketahui persamaan regresi linearnya, maka langkah selanjunya mencari korelasi untuk mengetahui pengaruh atau dampaknya, hal ini digunakan dengan rumus korelasi *product-moment* hasil tersebut dapat dilihat pada output SPSS korelasi

		Y	Х
Y	Pearson Correlation	1	.541*
	Sig. (2-tailed)		.014
	N	20	20
Х	Pearson Correlation	.541*	1
	Sig. (2-tailed)	.014	
	N	20	20

* Correlation is significant at the 0.05 level (2-tailed).

Hasil koefisien korelasi pada output SPSS adalah

 $\mathbf{r}_{xy} = \mathbf{0.541} > \mathbf{r}$ tabel 0.44 dengan taraf signifikansi 5%,

Kemudian mencari koefisien determinanya (r²) adalah

 $r_{xy} = 0.541^2 = 0.292681$ dibulatkan 0.293

jadi r²= 0,293

Dengan demikian, dapat disimpulkan "terdapat pengaruh yang signifikan varibel X terhadap Y" dengan hasil $r_{xy}=0,541$ (rh > rt), dan juga di mana varibel Y dapat dijelaskan oleh X sebesar 29,3%. **Keterangan**, 29,3%. Ini diambil dari koefisien determinan (r²= 0,293 × 100 = 29,3).

Cara menghitung dengan program SPSS, yaitu buka program SPSS lalu masukan atau isi data-data pada kolom "Var", setelah itu pilih menu "*analyze*" arahkan pada "*regression*", kemudian pilih dan klik "*linear*".

maka akan tampi dilayar seperi berikut ini:

File Edit	derhana - SP (iew Data 1	SS Data Editor Transform Analyze	<u>G</u> raphs <u>U</u> ti	lities <u>W</u> indow <u>H</u> elp			_ # ×
BBBBBBBBBBBBB		ls Islaal J⊏la Milinear Begress			×	1	
12:	× 47.00	₩ ×		Dependent:	OK Paste	var	^
2	72.00		Pregious	Block 1 of 1 Next	<u>R</u> eset Cancel		
5	60.00 70.00			★x	Help		
8	65.00 54.00			Selection Variable:	Bule		
10 11 12	57.00 50.00 72.00			Case Labels:			
13 14	68.00 63.00	<u>\\</u> LS >>	<u>S</u> tatistics	Plots Save	Options		
15	60.00 58.00	55.00 56.00					
17	68.00 74.00	57.00 62.00					
19	57.00	50.00					-
▲ ▶ \ Data Vi	lew Variable	View SPSS Proce	ssor is ready			J	Þ
🚮 Start 🛛 🖄	i 🚾 🖾 🎀	🛛 🚉 Exploring 👼)teknik an	Microsoft 🛗 regres	ii 🛅 Output1	7	34 PM

Pada menu "*linear regression*" masukan variabel Y ke kolom "*dependent*" dan X ke kolom "*Independent*", lalu arahkan *pointer* pada tulisan "*statistic*" dan klik, maka akan tampil dilayar sebagai berikut

🗰 regresi	sederhana - SPSS Data Editor 🛛 🛄 Linear Regr	ression	× IIX
<u>E</u> ile <u>E</u> dit	View Data Transform Analyz	Dependent:	ок
			Paste
12:		Previous Block 1 of 1 Next	Reset
	× y	Independent(a)	Cancel
1	47.00 37.00	Tunebei inervist	Help
2	72.00 69.00		
3	59.00 70.00		
4	50.00 35.00	Method: Enter	
5	Linear Begression: Statistics	X Selection Variable:	- L
6		Bule	
7	Hegression Loethcients M Model ht	Continue	1 F
8	Castidanas istemate	Cancel	- F
9	Cognitience intervals Covariance matrix Part and partial correlations	Help	
10	Collinearity diagnostics	ics Plots Save Option	18 –
10	Besiduals		
12			
10			
15	Configer entrille		
15	C ál cases		
17			
18	74.00 62.00		
19	57.00 50.00		
20	47.00 50.00		
▼ Data	View / Variable View /		
	SPSS Processor is ready		
Start	🖎 👿 🖄 🎢 🎽 🖳 Explori] 💆 teknik] 🗷 Micr	ros 🛅 regre 🚹 Output	₹ 📰 7:38 PM

Melalui menu "*linear regression : statstics*" pada kolom "*regressions coefficient*" pilih "*model fit*" dan "*part and partial correlations*" setelah itu "*continue*" dan "oke", maka akan keluar output SPSS sebagai berikut:

Regression

 Variables
 Entered/Removed
 b

 Model
 Variables
 Variables

 1
 X^a
 Method

 a.
 All requested variables entered.

b. Dependent Variable: Y

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.541 ^a	.292	.253	10.68999

a. Predictors: (Constant), X

Α	Ν	o	v	Aþ
		-	•	

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	850.034	1	850.034	7.438	.014 ^a
	Residual	2056.966	18	114.276		
	Total	2907.000	19			

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficients

Unstandardized Coefficients		Standardized Coefficients			C	Correlations			
Mode	I	В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	9.410	17.067		.551	.588			
	Х	.768	.281	.541	2.727	.014	.541	.541	.541

a. Dependent Variable: Y

Hasil output SPSS untuk uji regresi sederhana untuk perhitungan regresi linear lihat pada hasil *output coefficiens* di kolom B yang menunjukkan *constant*= 9,410 dan X = 0,768, maka persamaan garis regresinya adalah \hat{Y} = 9,410a + 0,768b dan hasil korelasinya adalah r_{xy} = 0,541 dan signifikansinya lihat pada output "Anova" p= 0,014 (p < 0,05) dengan koefisien determinasi r²= 0,292, dan untuk penafsirannya dapat dilihat pada perhitungan manual analisis regresi sederhana di atas.

2. Uji Regresi Ganda

Contoh data:

No.	X ₁	X ₂	Y	X ₁ Y	X ₂ Y	X ₁ X ₂	X_{1}^{2}	X_{2}^{2}	Y ²
1	47	17	37	1739	629	799	2209	289	1369
2	72	18	69	4968	1242	1296	5184	324	4761
3	59	20	70	4130	1400	1180	3481	400	4900
4	50	20	35	1750	700	1000	2500	400	1225
5	60	25	71	4260	1775	1500	3600	625	5041
6	70	20	72	5040	1440	1400	4900	400	5184
7	50	22	40	2000	880	1100	2500	484	1600
8	65	13	40	2600	520	845	4225	169	1600
9	54	30	69	3726	2070	1620	2916	900	4761
10	57	28	68	3876	1904	1596	3249	784	4624
11	50	13	38	1900	494	650	2500	169	1444
12	72	17	56	4032	952	1224	5184	289	3136
13	68	30	57	3876	1710	2040	4624	900	3249
14	63	19	58	3654	1102	1197	3969	361	3364
15	60	18	55	3300	990	1080	3600	324	3025
16	58	22	56	3248	1232	1276	3364	484	3136

17	68	20	57	3876	1140	1360	4624	400	3249
18	74	26	62	4588	1612	1924	5476	676	3844
19	57	20	50	2850	1000	1140	3249	400	2500
20	47	30	50	2350	1500	1410	2209	900	2500
Jml	1201	428	1110	67763	24292	25637	73563	9678	64512

ΣΥ	= 1110	$\Sigma X_1 X_2$	= 25637
ΣX_1	= 1201	ΣX_1^2	= 73563
ΣX_2	= 428	ΣX_2^2	= 9678
$\Sigma X_1 Y$	= 67763	ΣY^2	= 64512
$\Sigma X_2 Y$	= 24292	Ν	=20

Dimasukan dalam rumus persamaan regresi

Y	= an	$+ b_1 \Sigma X_1$	$+ b_2 \Sigma X_2$
$\mathbf{Y}\mathbf{X}_1$	$= a\Sigma X_1$	$+b1\Sigma X_2^2$	$+b_2\Sigma X_1X_2$
YX_2	$= a\Sigma X_2$	$+b^{1}\Sigma X_{1}X_{2}$	$_2 + b2\Sigma X_2^2$

masukan dalam angka, pertama mencari b2, yaitu:

1110 =	20 a	+ 1201 b ₂	$+428 b_1$ (1)
67763 =	1201a	$+73563 b_1$	$+ 25637 b_2$ (2)
24292 =	428 a	$+ 25637 b_1$	+ 9678 b ₂

$$\frac{\sum X_1}{N} = \frac{1201}{20} = 60,05 \times \Sigma Y(1110) = 66655,5$$

$$\frac{66655,5}{67763} = 1201a + 72120,05b_1 + 25701,4b_2$$

$$\frac{67763}{-1107,5} = 0 + -1442,95b_1 + 64,4b_2$$
(4)

$$\frac{\sum X_2}{N} = \frac{428}{20} = 21,4 \times \Sigma Y(1110) = 23754$$

$$\frac{23754}{24292} = 428a + 25701b_1 + 9159,2b_2$$

$$\frac{24292}{-538} = 0 + 64,4b_1 + 9678b_2 - \frac{-1442,95}{64,4} = -22,40606$$

$$\frac{1107,5}{64,4} = -22,40606$$

$$\frac{1107,5}{-12054,458} = 62442,05b_1 - 64,5b_2 + \frac{-12054,458}{11688,662b_2} + \frac{-1688,662b_2}{-66}$$
(6)

 $\frac{13161,958}{11688,662} = 1,1260449$

b₂ = 1,1260449

Mencari hasil b₁, yaitu:

1107,5 = 1442,95 + 64,4 (1,1260449) 1107,5 = 1442,95 + 72,51729 1442,95 = 72,51729 - 1107,5 1442,95 = 1180,0173

 $\frac{1180,0173}{1442,95} = 0,8177811$

b₁= **0,8177811**

Selanjutnya mencari konstanta (a), yaitu:

1110 = 20a + 1201b1 (0,8177811) + 428 b2 (1,1260449) 1110 = 20a + 982,1551b1 + 481,94722b2 -20 = 982,15515 + 481,9472 - 1110 -20 = 354,10237

$$\frac{354,10237}{-20} = -17,70512$$

a = -17,70512

.

maka angka-angka yang diperoleh dari hasil b₂, b₁ dan a dimasukan

dalam rumus persamaan garis regresi, yaitu:

$$Y = -17,705 a + 0,818 b_1 + 1,126 b_2$$

Setelah itu menguji persamaan garis regresinya:

a)
$$\Sigma X_1 Y = \Sigma X_1 Y - \frac{(\sum X_1)(\sum Y)}{n}$$

 $67763 - \frac{1201 \times 1110}{20} = 1107,5$
b) $\Sigma X_2 Y = \Sigma X_2 Y - \frac{(\sum X_2)(\sum Y)}{n}$

$$24292 - \frac{428 \times 1110}{20} = 538$$

c) $\Sigma Y^2 = \Sigma Y^2 - \frac{(\sum Y)^2}{n}$
 $= 64512 - \frac{1110^2}{20}$
 $= 64512 - \frac{1232100}{20}$
 $= 64512 - 61605 = 2907$

setelah angka-angka di atas diketahui langkah selanjutnya menghitung R hitung untuk korelasi ganda, dengan rumus;

$$R_{y.12} = \sqrt{\frac{b1\sum x_1 y + b_2 \sum x_2 y}{\sum y^2}}$$

$$R_{y.12} = \sqrt{\frac{(0,8177811 \times 1107,5) + (1,1260449 \times 538)}{2907}}$$
$$R_{y.12} = \sqrt{\frac{905,69257 + 605,812156}{2907}}$$

$$R_{y.12} = \sqrt{\frac{1511,50472}{2907}} = \sqrt{0,51995347} = 0,72107799$$

 $R_{y.12} = 0,72107799$

Untuk mencari koefisien determinan, yaitu:

 $R^2 = 0,72107799^2 = 0,51995347$

Langkah selanjutnya menguji signifikansinya dengan uji F, yaitu:

$$F_{reg} = \frac{R^2(n-m-1)}{m(1-R^2)}$$

Keterangan:

n= banyaknya anggota sampel m= banyaknya *predictor* atau variabel *independent*

$$F_{reg} = \frac{0.51995347(20 - 2 - 1)}{2(1 - 0.51995347)}$$
$$F_{reg} = \frac{8.83920899}{0.96006306} = 9.206616898$$

$F_{reg} = 9,206616898$

Hasil perhitungan dari uji F dapat dibandingkan dengan F tabel, di mana F tabel dengan taraf signifikansi 5% dan df pembilang = 2, serta df penyebut 17, maka F tabel= 3,59. Dengan demikian Fh > Ft, sehingga dapat dikatakan, bahwa "terdapat adanya pengaruh yang singnifikan varibel X_1 dan X_2 secara bersama-sama mempengaruhi terhadap Y", di mana variabel Y dapat dijelaskan dengan X_1 dan X_2 sebesar 51,9% dan sisanya 48,1% masih dipengaruhi oleh variabel lainnya.

Cara menghitung menggunakan program SPSS, pertama membuka program SPSS, lalu isi setiap kolom "var" dengan data yang telah diperoleh dari lapangan, kemudian pilih menu "*analyze*" arahkan kepada "*regression*" dan pilih "*linear*" klik, maka akan terlihat pada layar

pada menu *linear regression* masukan X1 dan X2 di kolom *independent,* dan Y di kolom *Dependent,* lalu pilih *statistics* klik akan terlihat dilayar

Pada menu "*linear regression : statistics*" untuk bagian kelompok "*regression coefficiens*" pilih "*estimates*", "*model fit*", dan "*part and partial correlations*", lalu klik "*continue*" dan oke. Hasil output SPSS adalah

Regression

-									
	Variables	Variables							
Model	Entered	Removed	Method						
1	X2, X1 ^a		Enter						
a. All requested variables entered									

b. Dependent Variable: Y

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate						
1	.723 ^a	.522	.466	9.03628						
a. Predictors: (Constant), X2, X1										

(----,, ,

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1518.875	2	759.437	9.301	.002 ^a
	Residual	1388.125	17	81.654		
	Total	2907.000	19			

a. Predictors: (Constant), X2, X1

b. Dependent Variable: Y

Coefficients^a

		Unstand Coeffi	lardized cients	Standardized Coefficients			(Correlations	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	-18.007	17.318		-1.040	.313			
	X1	.818	.239	.577	3.431	.003	.541	.640	.575
	X2	1.139	.398	.481	2.862	.011	.438	.570	.480

a. Dependent Variable: Y

hasil hitungan manual dengan kakulator hasilnya hanya berbeda sedikit dari hasil perhitungan melalui program, hal ini dikarenakan jumlah angka dibelakang koma bisa terhitung dari pada menghitung menggunakan kakulator sehingga terdapat perbedaan yang sediki, contohnya pada persamaan garis regresi untuk hitungan manual adalah

 $\hat{\mathbf{Y}}$ = -17,705 a + 0,818 b₁ + 1,126 b₂

dngna hitungan computer

 $\hat{\mathbf{Y}}$ = -18,007 a + 0,818 b₁ + 1,139 b₂

Kemudian pada hasil

Manual R_{v.12}= 0,721

Computer

 $R_{y.12}$ = 0,723 Manual R^2 = 0,51995347

Computer

 $R^2 = 0,522$

manual

F_{reg} = **9,206616898** Computer

 $F_{reg} = 9,301$

Langkah selanjutnya mencari Sumbangan Relatif (SR) dan Sumbangan Efektif (SE)⁸ untuk setiap variabel *independent* kepada *Varibel dependent* dengan rumus:

SR% X₁=
$$\frac{b_1 \sum X_1 Y}{(b_1 \sum X_1 Y)(b_2 \sum X_2 Y)} \times 100\%$$

= $\frac{0.8177 \times 1107.5}{(0.8177 \times 1107.5) + (1.126045 \times 538)} \times 100\%$

⁸ Sutrino Hadi. (1995)

$$= 0,59917548 \times 100\%$$
SR% X₁ = 59,91754787 (59,92%)
SR% X₂ = $\frac{b_2 \sum X_2 Y}{(b_1 \sum X_1 Y)(b_2 \sum X_2 Y)} \times 100\%$
= $\frac{1,126045 \times 538}{(0,8177 \times 1107,5) + (1,126045 \times 538)} \times 100\%$
= 0,40082452 × 100%

SR% $X_2 = 40.08245213 (40,08\%)$

Selanjutnya mencari efektifitas garis regresi dengan rumus:

$$\frac{JKt}{\sum Y^2} = \text{efektifitas garis regresi}$$
$$\frac{1511,414906}{2907} \times 100\% = 51,99226 \ (51,99\%)$$

Langkah selanjutnya mencari SE atau subambangan (kontribusi) setiap variabel *independent* kepada varibel *dependent*, dilakukan dengan rumus

SE% X₁=
$$\frac{b_1 \sum X_1 Y}{(b_1 \sum X_1 Y)(b_2 \sum X_2 Y)} \times \left(\frac{JKt}{\sum Y^2} \times 100\%\right)$$

= $\frac{0,8177 \times 1107,5}{(0,8177 \times 1107,5) + (1,126045 \times 538)} \times 51,99226\%$
= 31,1524854 hasil tersebut dibagi 100
= $\frac{31,1524854}{100}$

SE% X₁= 0,311524854 (SE = 0,312)

Hasil perhitungan untuk SE%X₁ untuk variabel Y dapat dijelaskan oleh X₁ sebesar **31,2%** ($\mathbf{r}^2 = 0,312 \times 100\% = 31,2\%$), atau bisa juga dikatakan X1 memberikan sumbangan (kontribusi) terhadap Y sebesar 31,2%.

Selanjutnya mencari SE%X₂, dengan rumus:

SE% X₂ =
$$\frac{b_2 \sum X_2 Y}{(b_1 \sum X_1 Y)(b_2 \sum X_2 Y)} \times \left(\frac{JKt}{\sum Y^2}\right)$$

= $\frac{1,126045 \times 538}{(0,8177 \times 1107,5) + (1,126045 \times 538)} \times 51,99226\%$

$$= \frac{0,208397715}{100}$$
 jadi SE% X₂= 0,208397715 (SE= 0,208)

Hasil perhitungan untuk SE%X₂ untuk variabel Y dapat dijelaskan oleh X₂ sebesar 20,8% atau bisa juga dikatakan X1 memberikan sumbangan (kontribusi) terhadap Y sebesar 31,2%. Selanjuntnya untuk mengetahui hasil sumbangan secara keseluruhan baik X₁ dan X₂ tehadap atau kepada Y yaitu: Hasil **SE% X₁ + SE% X₂ = 0,311524854 + 0,208397715 = 0.519922568** (SE= terdapat sumbangan secara bersama-sama X₁ dan X₂ terhadap Y sebesar 51,20%, atau variabel Y dapat dijelaskan oleh X₁ dan X₂ sebesar 51,20%).

Cara menghitung sumbangan (kontribusi) untuk masing-masing varibel *independent* kepada variabel *dependent* melalui program SPSS, buka data regresi ganda tadi, lalu klik *Analyze*, pilih "*regression*" dan klik "*linear*"

Pada menu "*linear regression*" varibel Y masukan pada kolom *dependent* dan X₁ serta X₂ masukan pada kolom *independent*, lalu pada "*method*." klik panah disampingnya pilih "*stepwise*", kemudian arahkan *pointer* pada "*statistic*" klik, akan tampil menu "*linear regression : statistic*", dan pada kolompok *regression coefficients* pilih "*estimate*", "*model fit*", "*R square change*" dan "*part and partial correlations*", *continue, oke*. Cara mengoprasionalkannya dapat dilihat pada gambar di atas, maka hasil output SPSS sebagai berikut:

b. Predictors: (Constant), X1, X2

Hasil penafsirannya dapat dilihat pada perhitungan manualnya untuk Sumbangan atau kontribusinya (Sumbangan Efektif).

d. Analisis Perbedaan dengan ANOVA

Analisis Varians (ANOVA) digunakan untuk mencari perbedaan antar varibel, maka terlebih sebelum melakukan perhitungan data menggunakan ANAVA ini, perlu kiranya menguji persyaratan Analisis Varians, yaitu dengan menguji **Normalitas** dan uji **Homogenitas**⁹. Hal ini dilakukan untuk mengetahui distribusi data normal dan keseragaman data, untuk pengujian persyaratan ANOVA ini, bisa langsung saja menggunakan program SPSS untuk menghitungnya dan mengetahui hasilnya. ANOVA memiliki dua model, yaitu: ANOVA dengan satu arah (1 Faktorial) dan ANOVA dua arah atau lebih dari satu variabel atau ANOVA 2 Faktorial, 3 Faktorial, dan seterusnya.

1. ANOVA Satu Arah (1 Faktorial)

contoh data:

No	Variabel							
140	Α	В	С	A^2	\mathbf{B}^2	C ²		
1	55	65	20	3025	4225	400		
2	55	65	35	3025	4225	1225		
3	45	65	35	2025	4225	1225		
4	55	75	35	3025	5625	1225		
5	55	65	45	3025	4225	2025		
6	45	55	45	2025	3025	2025		
7	45	65	45	2025	4225	2025		
8	55	65	40	3025	4225	1600		
9	55	65	35	3025	4225	1225		
10	45	75	35	2025	5625	1225		
Jml	510	660	370	26250	43850	14200		

$$\Sigma A = TA = 510$$
 n A = 10

⁹ Kirk. (1995).

$$\Sigma B = TB = 660 \qquad n B = 10$$

$$\Sigma C = TC = 370 \qquad n C = 10$$

$$N = 30$$

$$G = 1540 (TA + TB + TC)$$

$$Variabel^{2} (X^{2}) = 84300 (\Sigma A^{2} + \Sigma B^{2} + \Sigma C^{2})$$

$$JKT = \sum X^{2} - \frac{G^{2}}{N}$$

$$= 84300 - \frac{1540^{2}}{30}$$

$$= 84300 - 79053,333$$

$$= 5246,667$$

$$JKa = \sum \frac{T^{2}}{n} - \frac{G}{N}$$

$$= \frac{510^{2}}{10} + \frac{660^{2}}{10} + \frac{370^{2}}{10} - \frac{1540^{2}}{30}$$

$$= 26010 + 43560 + 13690 - 79053,333$$

$$= 83260 - 79053,333$$

$$= 4206,667$$

$$JKd = JKT - Jka$$

$$= 5246,667 - 4206,667$$

$$= 1040$$

mencari derajat kebebasan (degrees 0f freedom)

$$N - k = 30 - 3 = 27$$

Keterangan: N = banyaknya jumlah sampel k = jumlah kelompok

kemudian k - 1 = 3 - 1 = 2

mencari *mean square* (Rata-rata Kuadrat)

RK = rata-rata kuadrat

$$RKa = \frac{JKa}{dk.JKa}$$

$$RKa = \frac{4206,667}{2} = 2103,333$$
$$RKd = \frac{JKd}{dk.JKd}$$

$$RKd = \frac{1040}{27} = 38,519$$

Menghitung besarnya F hitung dengan rumus

$$F = \frac{RKa}{RKd}$$

$$F = \frac{2103,3335}{38,518} = 54,606$$

Perhitungan tersebut dapat dapat disajikan dalam tabel ANOVA adalah sebagai berikut:

Jumlah Varians	dk	Jml Kuadrat	Rata-rata Kuadrat	Fh	F t
Antar kelompok	2	4206,667	2103,333	54,606	3,35
Dalam kelompok	27	1040	38,519		
Total	29	5246,667			

Hasil perhitungan tersebut dapat ditafsirkan:

- Bila F hitung sama atau lehih kecil dari F tabel, maka Ho diterima dan Ha ditolak.
- •Bila F hitung lebih besar dari F tabel, maka Ho di tolak dan Ha diterima.

Penafsiran pada hasil ANOVA satu arah ini F h > F t pada tarf sig. 5% (3,35), maka Ho ditolak dan Ha diterima. Dengan demikian, terdapat perbedaan antara variabel A, B dan C.

Analisis sesudah ANOVA, biasanya dilakukan analisis untuk mengetahui perbedaan lebih lanjut. Teknik analisis yang dapat digunakan, antara lain Tukeys HSD, Bonferroni, Sidak, Scheffe, Duncan, dll. Akan tetapi yang lebih popular dan sering digunakan adalah Tukeys HSD. Adapun proses perhitungannya adalah sebagai berikut.

rumus Tukeys HSD

$$\text{HSD= } q \sqrt{\frac{RKd}{N}}$$

Keterangan:

n	= banyaknya sampel per kelompok
q	<i>= the studentizet range statistic</i> (ada pada tabel F)
k	= banyaknya kelompok
dk	= n - k

$$HSD = 3,49\sqrt{\frac{38,519}{3}} = 44,81043667$$

Keterangan:

Perolehan q dengan melihat tabel the studentizet range statistic, dengan

k = 3 dan N - k = 30 - 3 = 27.

Mencari perbedaan rata-rata antar kelompok

Menghitung rata-rata masing-masing kelompok, yaitu:

$$A = \frac{510}{10} = 51$$
$$B = \frac{660}{10} = 66$$
$$C = \frac{370}{10} = 37$$

Selanjunya dari rata-rata masing-masing dapat dibuat tabel perbedaan rata-rata antar kelompok

Variabel	Α	В	С
А	-	15	14
В	15	-	29
С	14	29	-

Melalui hasil rata-rata antar kelompok dibandingkan dengan nilai HSD = 44,81 untuk mencari perbedaannya, bila perbedaan rata-rata lebih besar dari nilai HSD berarti ada perbedaan yang signifikan. Akan tetapi, bila perbedaan rata-rata lebih kecil dari nilai HSD tidak ada perbedaan. Dalam hal ini ratarata masing-masing kelompok nilainya dibawah nilai HSD, maka tidak terdapat perbedaan.

 $A \neq B$ = kelompok A tidak ada perbedaan dengan kelompok B

 $A \neq C$ = kelompok A tidak ada perbedaan dengan kelompok C

 $B \neq C$ = kelompok B tidak ada perbedaan dengan kelompok C

Cara menghitung dengan program SPSS, buka program SPSS lalu isi data pada kolom "var" sesuai dengan urutan kelompok, pada layar sebagai berikut:

Cara memasukan datanya adalah ketik data seperti ini seperti tampilan berikut ini:

Var0001	Var0002
55	1
55	1
45	1
55	1
55	1
45	1
45	1
55	1
55	1
45	1
65	2
65	2
65	2
75	2
65	2
55	2
65	2
65	2
65	2
75	2
20	3
35	3
35	3
35	3
45	3
45	3
45	3

40	3
35	3
35	3

setelah itu buka "*variables view*", pada kolom "*name*" ubahlah urutan pertama menjadi variabel dan kedua kelompok, lalu pada urutan kedua di kolom "*Values*" klik tanda disampingnya hingga keluar menu "*value label*", pada layar sebagai berikut:

Pada baris "value label" untuk "value" isi angka "1", dan untuk "value label" isi "a" lalu klik "add", selanjutnya isi value lagi dengan angka 2 dan value label isi b, klik add, terus sampai ke tiga lalu klik ok, hal ini dapat dilihat pada gambar di atas tadi. Setelah itu, kembali kepada "data view". untuk kelompok isi data tersebut dengan angka 1pada bagian kelompok satu, angka 2 untuk bagian kelompok dua, dan angka 3 untuk bagian kelompok tiga.

Selanjutnya dari menu "*data view*" arahkan pointer pada "*analyze*", kemudian pilih "*compare means*" lalu arahkan kepada "*one-way Anova*" klik lalu akan terlihat pada layar

Pada menu "one-way Anova" masukan variabel ke kolom "dependent list", dan kelompok pada kolom "factor". Kemudian arahkan pointer ke "post Hoc.." lalu klik, maka akan tampil menu "one-way anova post Hoc multiple comparations" pada baris "equal variance assumed" pilih "Tukeys" klik "continue", selanjunya dari menu "one-way Anova" arahkan pointer kembali pada option dan pada baris statistic pilih "descriptive" dan "homogeneity varians test" lalu "continue " klik oke,

maka hasil output SPSS adalah:

Oneway

VARIABEI

Descriptives

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
а	10	51.00	5.164	1.633	47.31	54.69	45	55
b	10	66.00	5.676	1.795	61.94	70.06	55	75
С	10	37.00	7.528	2.380	31.61	42.39	20	45
Total	30	51.33	13.451	2.456	46.31	56.36	20	75

Test of Homogeneity of Variances

VARIABEL			
Levene Statistic	df1	df2	Sig.
584	2	27	565

ANOVA

VARIABEL								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	4206.667	2	2103.333	54.606	.000			
Within Groups	1040.000	27	38.519					
Total	5246.667	29						

Post Hoc Tests

Multiple Comparisons

Dependent Variable: VARIABEL Tukev HSD

		Mean Difference			95% Confide	nce Interval
(I) KELOMPOK	(J) KELOMPOK	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
а	b	-15.00*	2.776	.000	-21.88	-8.12
	с	14.00*	2.776	.000	7.12	20.88
b	а	15.00*	2.776	.000	8.12	21.88
	с	29.00*	2.776	.000	22.12	35.88
С	а	-14.00*	2.776	.000	-20.88	-7.12
	b	-29.00*	2.776	.000	-35.88	-22.12

*. The mean difference is significant at the .05 level

Homogeneous Subsets

VARIABEL

Tukey HSD =							
		Subset for alpha = .05					
KELOMPOK	N	1	2	3			
С	10	37.00					
а	10		51.00				
b	10			66.00			
Sig.		1.000	1.000	1.000			

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 10.000.

Hasil dari output SPSS dapat dilihat dan ditafsirkan pada perhitungan manualnya untuk ANOVA satu arah dan untuk hasil output tersebut telah diberi lingkaran yang sesuai dengan hasil perhitungan manualnya.

2. ANOVA Dua Arah (2 Faktorial)

Hipotesis yang akan diuji adalah:

1) Pengaruh media iklan (A)

Ho = Media iklan mempengerahui tingkat penjualan

Ha = Media iklan mempengaruhi tingkat penjualan

2) Pengaruh kemasan (B)

Ho = Bentuk kemasan tidak mempengaruhi tingkat penjualan

- Ha = Bentuk kemasan mempengaruhi tingkat penjualan
- 3) Interaksi media iklan dan kemasan (A * B)
 - Ho = Tingkat penjualan karena media iklan tidak tergantung pada bentuk kemasan dan tingkat penjualan karena bentuk kemasan tidak tergantung pada media iklan.

Ha = Tingkat penjualan karena media iklan tergantung pada bentuk kemasan dan tingkat penjualan karena bentuk kemasan tergantung pada media iklan.

Contoh data:

x 7	·					KEMAS	SAN			Total
v	ar		AB1	BB2	CB3	Total	AB ²	BB ²	CB ²	
			150	225	223		22500	50625	49729	
	Η		120	280	295		14400	78400	87025	
	N		200	280	295		40000	78400	87025	
	Ĕ		250	179	300		62500	32041	90000	
	X		200	200	320		40000	40000	102400	
-	ELF		AB1	AB2	AB3		AB1 ²	AB2 ²	AB3 ²	
A		Jml	920	1164	1433	A1	179400	279466	416179	A1 ²
N						3517				875045
			200	180	220		40000	32400	48400	
			230	285	300		52900	81225	90000	
	X		260	275	310		67600	75625	96100	
	ΤA		245	340	360		60025	115600	129600	
	CE		250	290	330		62500	84100	108900	
			A2B1	A2B2	A2B3		A2B1 ²	A2B2 ²	A2B3 ²	
		Jml	1185	1370	1520	A2	283025	388950	473000	A2 ²
						4075				1144975
			B1	B2	B3	G	$B1^2$	$B2^2$	B3 ²	ΣX^2
		Jml	2105	2534	2953	7592	462425	668416	889179	2020020

A1	= 3517	A2 = 4075	
B1	= 2105	B2 = 2534	B3 = 2953
G	= 7592		
ΣX^2	= 202002	20	
р	= 2		
q	= 3		
n	= 5		
Ν	= 30		

Perhitungan derajat kebebasan (df)

dk JKt	= N - 1	= 30 - 1	= 29
dk JKa	= pq - 1	$=(2 \times 3) - 1$	= 5
dk JK _d	= N - pq	= 30 - (2 - 3)	= 24
dk JK _A	= p - 1	= 2 - 1	= 1
dk JK _B	= q - 1	= 3 - 1	= 2
dk JK _{AB}	= dk JK _A	\times dk JKB = 1 \times	2=2

Perhitungan jumlah kuadrat (JK)

a)
$$JK_t = X^2 - \frac{G^2}{N}$$

 $= 2020020 - \frac{7592^2}{30}$
 $= 2020020 - 1921282,133$
 $= 98737,867$
b) $JKa = \sum \frac{AB^2}{n} - \frac{G^2}{N}$
 $= \frac{920^2}{5} + \frac{1185^2}{5} + \frac{1164^2}{5} + \frac{1370^2}{5} + \frac{1433^2}{5} + \frac{1520^2}{5} - \frac{7592^2}{5}$
 $= 1969262 - 1921282,133$
 $= 47979,867$
c) $JK_d = JK_t - Jka$
 $= 98737,867 - 47979,867$
 $= 50758$
d) $JK_A = \sum \frac{A^2}{qn} - \frac{G^2}{N}$
 $= \frac{3517^2}{3\times5} + \frac{4075^2}{3\times5} - \frac{7592^2}{30}$
 $= 1931660,933 - 1921282,133$
 $= 10378,8$
e) $JK_B = \sum \frac{B^2}{pn} - \frac{G^2}{N}$
 $= \frac{2105^2}{2\times5} + \frac{2534^2}{2\times5} + \frac{2953^2}{2\times5} - \frac{7592^2}{30}$
 $= 1957239 - 1921282,133$
 $= 35956,867$

f) $JK_{AB} = JKa - JK_A - JK_B$ = 47979,867 - 10378,8 - 35956,867 = 1644,2

Perhitungan rata-rata kuadrat (RK)

a)
$$RK_d = \frac{JK_d}{dk.JK_d}$$

$$= \frac{50758}{24} = 2114,916667$$

b) RK_A = $\frac{JK_A}{dk.JK_A}$
= $\frac{10378,8}{1} = 10378,8$

c) RKa =
$$\frac{JK_B}{dk.JK_B}$$

= $\frac{35956,867}{2}$ = 17978,4335

d) RK_{AB} =
$$\frac{JK_{AB}}{dk.JK_{AB}}$$

= $\frac{1644,2}{2}$ = 822,1

Perhitungan F ratio

a)
$$F_A = \frac{RK_A}{RK_d}$$

= $\frac{10378,8}{2114,916667} = 4,9074274$

b)
$$F_b = \frac{RK_B}{RK_d}$$

= $\frac{17978,4335}{2114,916667} = 8,50077631$

c)
$$F_{AB} = \frac{RK_{AB}}{RK_d}$$

= $\frac{822,1}{2114,916667} = 0,388715079$

Hasil perhitungan dari ANOVA dua arah di atas dapat dibuat tabel sebaghai berikut:

Sumber Varians	dk	SS	MS	Fh	F t
Baris A	1	10338,8	10338,8	4,907	4,26
Kolom B	2	35956,867	17978,84335	8,500	3,40
Interaksi A * B	2	1644,2	822,1	0,3887	3,40

Dalam sel	24	50758	140,625	
Jumlah	29	98737,867		

- Hasil perhitungan ratio untuk Fa pada baris A menunjukkan Fh (4,907) > Ft (0,05)= 4,26, di mana dk 1 untuk pembilang dan 24 untuk penyebut, maka menerima Ha dan menolak Ho. Dengan demikian berarti bahwa media iklan mempengaruhi tingkat penjualan.
- Hasil perhitungan ratio untuk Fb pada baris B menunjukkan Fh (8,500) > Ft (0,05)= 3,40, di mana dk 2 untuk pembilang dan 24 untuk penyebut, maka menerima Ha dan menolak Ho. Dengan demikian dapat disimpulkan bahwa bentuk kemasan mempengaruhi tingkat penjualan.
- 3) Hasil perhitungan ratio untuk F_{A*B} pada baris B menunjukkan Fh (0,3887)
 > Ft (0,05)= 3,40, di mana dk 2 untuk pembilang dan 24 untuk penyebut, maka menerima Ha dan menolak Ho. Dengan demikian, bahwa bentuk kemasan bersama-sama dengan media iklan tidak mempengaruhi tingkat penjualan.

Selanjutnya, dilanjutkan dengan uji Tukeys dengan rumus:

HSD=
$$q \sqrt{\frac{RK_d}{n}}$$

= 4,37 $\sqrt{\frac{2114,916667}{10}}$ = 63,55183089

Menghitung mean masing-masing kelompok

Mean B1 =
$$\frac{2105}{10}$$
 = 210,5

$$Mean B2 = \frac{2534}{10} = 253,4$$

Mean B3 =
$$\frac{2953}{10}$$
 = 295,3

Hasil dari rata-rata masing-masing kelompok dapat dibuat tabel perbedaan rata-rata adalah sebagai berikut:

Variabel	B 1	B2	B3
B1	-	42,9	84,8
B2	42,9	-	41,9
B3	84,8	41,9	-

Berdasarkan perbedaan tingkat penjualan terdapat pada kemasan B1 dan B3. kemudian bentuk kemasan yang paling dominan mempengarahui tingakat penjualan adalah kemasan B3.

Cara perhitungan dengan menggunakan program SPSS adalah, buka program SPSS, masukan data seperti berikut ini:

No	Var	Var	Var
1	1	150	1
2	1	120	1
3	1	200	1
4	1	250	1
5	1	200	1
6	2	200	1
7	2	230	1
8	2	260	1
9	2	245	1
10	2	250	1
11	1	225	2
12	1	280	2
13	1	280	2
14	1	179	2
15	1	200	2
16	2	180	2
17	2	285	2
18	2	275	2
19	2	340	2
20	2	290	2
21	1	223	3
22	1	295	3
23	1	295	3
24	1	300	3
25	1	320	3
26	2	220	3
27	2	300	3
28	2	310	3
29	2	360	3
30	2	330	3

Kemudian buka "*variable view*" pada kolom name untuk nomor 1 tulis iklan, no. 2 Kemasan, no. 3 kemasan2. Setelah itu pada kolom "*value*" untuk barisan pertama klik tanda disampingnya dan akan tampak menu "*value label*" pada tulisan "*value isi*" angka 1 dan "*value label*" isi Elektronik, lalu klik add. Lanjutkan pada "*value isi*" kembali angka 2 dan "*value label*" isi Cetak, lalu *add*, dan klik oke. Selalanjutnya pada kolom "*value*" urutan no. 3 pada barisan kemasan2 klik kembali tanda disampingnya dan isi "*value*" dengan angka 1 dan "*value label*" B1 seterusnya sampai no. 3.

langkah selanjutnya kembali pada "*data view*" dari *analyze* pilih "*General linear model*" lalu arahkan pada "*univariate*" kemudian klik maka, akan tampil dilayar

Pada menu "Univariate" pada kolom "dependent variables" isi kemasan dan pada kolom "fixed factors" isi iklan dan kemasan2, setelah itu arahkan pointer pada "post hoc" lalu klik, maka akan muncul menu "Univariate post hoc multiple....." melaui menu tersebut pada kolom "factor" untuk iklan dan kemasan2 diblok lalu klik panah agar masuk pada kolom "post hoc tests for", setelah itu pada "equal variances assumed" pilih Tukeys, klik continue. Hal tersebut dapat dilihat pada gambar dibawah ini.

Pada menu "univariate" itu juga pilih "*options*" maka akan tampil menu "*Univariate options*" pada menu tersebut pilih "*descriptive statistic*" dan "*homogeneity*", klik *continue* dan oke.

hasil output SPSS adalah:

Univariate Analysis of Variance

Warnings

Post hoc tests are not performed for IKLAN because there a	ire
groups.	

Between-Subjects Factors

		Value Label	N
IKLAN	1	Elektro	15
	2	Cetak	15
KEMASAN2	1	B1	10
	2	B2	10
	3	B3	10

Descriptive Statistics

Dependent Variable: KEMASAN

IKLAN	KEMASAN2	Mean	Std. Deviation	N
Elektro	B1	184.00	50.299	5
	B2	232.80	46.062	5
	B3	286.60	37.018	5
	Total	234.47	60.015	15
Cetak	B1	237.00	23.345	5
	B2	274.00	58.245	5
	B3	304.00	52.249	5
	Total	271.67	52.053	15
Total	B1	210.50	46.335	10
	B2	253.40	54.058	10
	B3	295.30	43.663	10
	Total	253.07	58 350	30

а Levene's Test of Equality of Error Variances

Dependent Variable: KEMASAN Т 164 40

Г	un	uiz	Sig.			
.505	5	24	.769			
Tests the null hypothesis that the error variance of the						

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

Design: Intercept+IKLAN+KEMASAN2+IKLAN
 * KEMASAN2

Tests of Between-Subjects Effects

0:-

Dependent Variable: KEMASAN

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	47979.867 ^a	5	9595.973	4.537	.005
Intercept	1921282.133	1	1921282.133	908.443	.000
IKLAN	10378.800	1	10378.800	4.907	.036
KEMASAN2	35956.867	2	17978.433	8.501	.002
IKLAN * KEMASAN2	1644.200	2	822.100	.389	.682
Error	50758.000	24	2114.917		
Total	2020020.000	30			
Corrected Total	98737.867	29			

a. R Squared = .486 (Adjusted R Squared = .379)

Post Hoc Tests **KEMASAN2**

Multiple Comparisons

Dependent Variable: KEMASAN Tukey HSD

, .						
		Mean Difference			95% Confide	ence Interval
(I) KEMASAN2	(J) KEMASAN2	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
B1	B2	-42.90	20.567	.114	-94.26	8.46
	B3	-84.80*	20.567	.001	-136.16	-33.44
B2	B1	42.90	20.567	.114	-8.46	94.26
	B3	-41.90	20.567	.125	-93.26	9.46
B3	B1	84.80*	20.567	.001	33.44	136.16
	B2	41.90	20.567	.125	-9.46	93.26

Based on observed means.

 $^{\ast}\cdot$ The mean difference is significant at the .05 level.

Homogeneous Subsets

KEMASAN

Tukey HSD	a,b			
			Sub	oset
KEMASAN2		N	1	2
B1		10	210.50	
B2		10	253.40	253.40
B3		10		295.30
Sia.			.114	.125

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square(Error) = 2114.917.

a. Uses Harmonic Mean Sample Size = 10.000.

b. Alpha = .05.

hasil output SPSS untuk ANOVA dua arah telah ditafsirkan melalui perhitungan manual di atas. Untuk lebih jelasnya akan diberi tanda lingkaran pada hasil dari ANOVA yang sesuai dengan perhitungan manual.

e. Analisis Perbedaan dengan Nonparametrik

Analisis Nonparametric dalam teknik analisis data ini hanya dibatasi pada uji Wilcoxon Match Pairs Test, Analisis Varians satu jalan Kruskal-Wall, dan Friedman.

1. Uji Wilcoxon Match Pairs Test.

Teknik ini merupakan penyempurnaan dari uji tanda (*Sign Test*). Teknik ini digunakan untuk menguji signifikansi hipotesis komparatif dua sampel yang bekorelasi bila datanya berbentuk ordinal. Uji Wilcoxon Match Pairs Test, di mana dalam pengujian tersebut untuk mengetahui perbedaan "sebelum dan sesudah dilaksanakan", ataupun perbandingan antara "sebelum dan sesudah".

No.	Sebelum	Sesudah	Beda	Tanda Jenjang		
Respnt	(A)	(B)	A – B	range	positif	negatif
1	100	105	+ 5	7,5	7,5	
2	98	94	- 4	5,5		5,5
3	76	78	+ 2	2,5	2,5	
4	90	98	+ 8	9	9	
5	87	90	+ 3	4	4	
6	89	85	- 4	5,5		5,5
7	77	86	+ 9	10	10	
8	92	87	- 5	7,5		7,5
9	78	80	+ 2	2,5	2,5	
10	82	83	+ 1	1	1	
				Jumlah	T= 36,5	18,5

Contoh data

Berdasarkan hasil perhitungan uji Wilcoxon Match Pairs Test, n= 10 untuk taraf signifikansi 5% maka T tabel = 8, lalu hasil nilai negatif atau nilai yang terkecil 18,5 > T tabel (8). Menerima Ho, artinya memiliki tidak perbedaan atau pengaruh sebelum dan sesudah dilaksanakan.

Langkah selanjutnya dilakukan uji Z dengan rumus

$$Z = \frac{T - \mu T}{\sigma T} = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$
$$= \frac{18,5 - \frac{10(10+1)}{4}}{\sqrt{\frac{10(10+1)(2.10+1)}{24}}} = \frac{18,5 - 27,5}{9,8} = -0,918$$

Bila taraf signifikansi 0,025 maka harga z tabel = -1,96, dan jika dibandingkan dengan z hitung = -0,918 < dari z tabel (-1,96), maka Ho diterima. Dengan demikian "tidak memiliki perbedaan baik sebelum ataupun sesudah".

Cara menghitung melalui program SPSS, buka program SPSS lalu masukan data pada kolom var dan ganti kata var dengan kalimat sebelum dan sesudah. Kemudian arahkan *pointer* pada *Analyze* pilih *Nonparametric,* setelah itu pilih "2 related sample", klik.

Pada menu "*two related samples*", masukan sebelum dan sesudah pada "*pair(s) list*", lalu pada "*test tipe*" pilih wilcoxon, setelah itu klik *options* pilih "*descriptive*", lalu *continue*, oke. Hasil output SPSS NPar Tests

Descriptive Statistics

	Ν	Mean	Std. Deviation	Minimum	Maximum
SEBELUM	10	86.9000	8.53034	76.00	100.00
SESUDAH	10	88.6000	8.35597	78.00	105.00

Wilcoxon Signed Ranks Test

	R	anks		
		N	Mean Rank	Sum of Ranks
SESUDAH - SEBELUM	Negative Ranks	3 ^a	6.17	18.50
	Positive Ranks	7 ^b	5.21	36.50
	Ties	0 ^c		
	Total	10		
a. SESUDAH < SEBEI	UM	-		
b. SESUDAH > SEBEI	LUM			
C. SEBELUM = SESU	ОАН			
Tes	t Statistics b			
	SE SE	SUDAH - EBELUM		
Z919 ^a				
Asymp. Sig. (2-tailed)	.358			
 Based on negativ 	e ranks.			
b. Wilcoxon Signed	Ranks Test			

Untuk penafsirannya sesuaikan dengan hasil perhitungan manualnya yang telah ditafsirkannya di atas.

2. Analisis Varians satu jalan Kruskal-Walls

Teknik ini digunakan untuk menguji hipotesis k sampel independent bila datanya berrbentuk ordinal. Rumus Kruskal-Walls adalah Contoh data:

Rangking perstasi pegawai								
Α	Rank	В	Rank	С	Rank			
78	21	82	24,5	69	13,5			
92	33	89	30	79	22			
68	12	72	15	65	11			
56	3	57	5	60	7			
77	19,3	62	8,5	71	16			
82	24,5	75	18,5	74	17			
81	23	64	10	83	26			
62	8,5	77	19,5	56	3			
91	32	84	27	59	6			
53	1	56	3	90	31			
85	28	88	29					
		69	13,5					
R1= 205,5		R2	= 203	R3=	= 152,5			

R1=205,5R2=203R2=152,5

Rumus: H =
$$\frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_1^2}{n_j} - 3(N+1)$$

$$H = \frac{12}{33(33+1)} \left[\frac{(205,5)^2}{11} + \frac{(203)^2}{12} + \frac{(152,5)^2}{10} \right] - 3(33+1)$$

= 102,66 - 102 = 0,66

Selanjutnya H hitung tersebut dibandingkan dengan harga Chi Kuadrat tabel, yaitu dk = k - 1 = 3 - 2 = 1 dengan taraf signifikansi 5%, maka chi kuadra tabel = 5,59. bila dibandingkan dengan H hitung < Chi kuadrat tabel. Dengan demikian Ho diteriama dan Ha ditolak, maka "terdapat perbedaan antara prestasi pegawai A, B, C".

Cara memasukan data dalam program SPSS isi data sebagai berikut:

No	Var	Var
1	78	1
2	92	1
3	68	1
4	56	1
5	77	1
6	82	1
7	81	1
8	62	1
9	91	1
10	53	1
11	85	1
12	82	2
13	89	2
14	72	2
15	57	2
16	62	2
17	75	2
18	64	2
19	77	2
20	84	2
21	56	2
22	88	2
23	69	2
24	69	3
25	79	3
26	65	3
27	60	3
28	71	3
29	74	3
30	83	3
31	56	3
32	59	3
33	90	3

Menghitung dengan program SPSS, adalah buka program SPSS lalu masukan data pada *data view*, setelah itu rubahlah kolom "Var" menjadi "Prestasi" dan kolom var kedua menjadi "Rank" melalui *variable view* pada kolom "*value*" lakukan seperti halnya memasukan data pada ANOVA. Selanjutnya, dari "*Analyze*" pilih "*Nonparametric*", lalu pilih "*k independent samples*", klik.

Pada menu "*test for several independent samples*", masukan prestasi ke kolom "*test variabel list*" dan Rank pada "*Groping variable*". Selanjutnya arahkan *pointer* pada *option*, klik maka akan terlihat menu "*several independent samples*" pada baris *statistic* pilih "*descriptive*", *continue*, lalu *Ok*, untuk lebih jelasnya lihat pada gambar di atas.

Hasil Output SPSS adalah

NPar Tests

Descriptive Statistics								
	N	Mean	Std. Deviation	Minimum	Maximum			
PRESTASI	33	72.91	11.833	53	92			
RANK	33	1.97	.810	1	3			

Kruskal-Wallis Test

Ranks							
	RANK	N	Mean Rank				
PRESTASI	Α	11	18.68				
	В	12	17.00				
	С	10	15.15				
	Total	33					

Test Statistics ^{a,b}						
	PRESTASI					
Chi-Square	.700					
df	2					
Asymp. Sig.	.705					
a. Kruskal Wallis Test						
b. Grouping Variable: RANK						

Penafsirannya hasil output sama halnya dengan perhitungan manual, dan hasil perhitungan computer akan dilingkari sesuai dengan hasil perhitungan manual.

3. Analisis Varians Dua Jalan Friedman

Friedman *Two Way Anova* (Analisis Varians dua jalan Friedman) digunakan untuk menguji hipotesis komparatif K sampel yang berpasangan (related) bila datanya berbentuk ordinal (rangking).

Contoh,

"Pengaruh prestasi 3 orang pegawai terhadap efektivitas pekerjaan".

- Ho = Ketiga orang pegawai mempunyai pengaruh yang sama terhadap efektivitas kerja.
- Ha = Ketiga orang pegawai mempunyai pengaruh yang berbeda terhadap efektivitas kerja

Contoh data:

	Efektivitas kerja berdasarkan							
No Vin	3 orang pegawai							
No. Kip	Dire	ktif	Supp	Supportif		isipatif		
	Data	Rank	Data	Rank	Data	Rank		
1	76	3	70	1	75	2		
2	71	2	65	1	77	3		
3	56	1	57	2	74	3		
4	67	3	60	2	59	1		
5	70	2	56	1	76	3		
6	77	3	71	1	73	2		
7	45	1	47	2	78	3		
8	60	1	67	3	62	2		
9	63	2	60	1	75	3		
10	60	2	59	1	74	3		
11	61	3	57	1	60	2		
12	56	1	60	2	75	3		
13	59	2	54	1	70	3		
14	74	3	72	2	71	1		
15	66	3	63	1	65	2		
Jml	961	32	918	22	1054	36		

Rumus:

$$X^{2} = \frac{12}{Nk(k+1)} \sum_{j=1}^{k} (R_{j})^{2} - 3N(k+1)$$

= $\frac{12}{(15)(3)(3+1)} [(32^{2} + 22^{2} + 36^{2})] - 3(15)(3+1)$
= 6,93

Menguji signifikansinya perlu dibandingkan dengan tabel chi kuadrat dk = k – 1= 3 – 1 = 2, dengan taraf kesalahan 5% maka chi kuadrat= 5,99. bila dibandingkan dengan X^2 hitung > X^2 tabel. Dengan demikian, Ho ditolak dan menerima Ha, maka "prestasi ketiga orang pegawai mempunyai pengaruh yang berbeda terhadap efektivitas kerja".

Cara perhitungan melalui program SPSS adalah buka program SPSS lalu isi data pada kolom var, setelah data tersisi, ubahlah var tersebut untuk kolom pertama dengan nama "direktif, kolom kedua "supportif" dan kolom ketiga dengan "partisipatif".

):							
	direktif	supporti	partisip	100			
1	76	70	75				
2	71	65	77				1.2
3	56	57	74			-	
4	67	60	59				
5	70	56	76				
6	77	71	73				
7	45	47	78				
8	60	67	62				
9	63	60	75				
10	60	59	74				
11	61	57	60				
12	56	60	75				
13	59	54	70				
14	74	72	71				
15	66	63	65				
16							1.1
112							
121							
12							
	Barry Charlester	Change I		191	_		

Senjutnya dari data view arahkan pada "analyze", pilih "Nonparametric", lalu pilih "k related sampel" klik.

Melalui menu "*test several related samples*" masukan "direktif, supportif dan partisipatif" pada kolom "*test variabel*" lalu klik options akan muncul menu *several related* sampel pilih "*descriptive*" klik *continue*, oke.

Hasil output SPSS adalah

NPar Tests

Descriptive Statistics						
	Ν	Mean	Std. Deviation	Minimum	Maximum	
DIREKTIF	15	64.07	8.730	45	77	
SUPPORTI	15	61.20	6.899	47	72	
PARTISIP	15	70.93	6.341	59	78	

Friedman Test

Ranks		
	Mean Rank	
DIREKTIF	2.13	
SUPPORTI	1.47	
PARTISIP	2.40	
Test Statistics ^a		

N	15	
Chi-Square	6.933	
df	2	
Asymp. Sig.	.031	
a. Friedman Test		

Hasil dari output SPSS penafsirannya lihat pada perhitungan manual.

III. Analisis Data Kualitatif

Analisis data kualitatif yang populer digunakan oleh para peneliti adalah Analisis Data Model Interaktif dari Miles dan Huberman. Pada saat penyususun laporan dari hasil data-data dilapangan untuk menganalisis data kualitatif perlu adanya keabsahan data sebagai validitas dan reliabilitas dari hasil penelitian.

a. Keiteria dan Teknik Keabsahan data

Kriteria	Teknik Pemeriksaan Data
Kredibilitas (Credibility)	1) Perpanjangan keikut sertaan
	2) Ketekunaan pengamatan
	3) Trianggulasi
	4) Pengecekan sejawat
	5) Kecukupan referensial
	6) Kajian kasus negatif
	7) Pengecekan anggota
Kebergantungan (Dependability)	Audit trail :
	1) Data mentah
	2) Hasil analsis data
	3). Hasil sintesis data
	4) Catatan mengenai proses yang
	digunakan

Menjamin keabsahan data dalam penelitian dapat disajikan dalam tabel berikut ini:

1. Kredibilitas atau derajat kepercayaan

- Perpanjangan keikutsertaan, dilakukan untuk menuntun peneliti agar terjun ke lokasi dan dalam waktu yang cukup panjang guna mendeteksi dan memperhitungkan distorsi yang mungkin terjadi kesalahan atau mengotori data.
- Ketekunan pengamat, dilakukan untuk menemukan ciri-ciri dan unsurunsur dalam situasi yang relevan dengan persoalan atau isu yang sedang dicari dan memusatkan pada hal – hal tersebut secara rinci.
- Trianggulasi, dilakukan untuk kebenaran data tertentu dengan membandingkan dengan data yang diperoleh dari sumber lain. Selain itu,

teknik trianggulasi yang banyak digunakan adalah pemeriksaan melalui sumber lain.

- 4) Pengecekan sejawat, teknik ini dilakukan dengan cara mengekspos hasil sementara atau hasil akhir yang diperoleh dalam bentuk diskusi atau analitik dengan rekan-rekan sejawat, agar supaya peneliti tetap mempertahankan sikap terbuka dan kejujuran dan dengan adanya diskusi melalui teman sejawat memberikan suatu kesempatan yang baik untuk memulai menjajaki dan menguji hipotesis yang muncul dari pemikiran peneliti.
- 5) Kecukupan referensial, dalam hal ini untuk menampung dan menyesuaikan dengan kritik tertulis untuk keperluan evaluasi. Biasanya peneliti menggunakan alat perekam yang dapat dimanfaatkan untuk membandingkan hasil yang diperoleh dengan kritik yang telah terkumpul.
- 6) Analisis kasus negative, hal ini dilakukan dengan jalan mengumpulkan contoh-contoh dari kasus yang tidak sesuai dengan pola kecenderungan informasi yang telah dikumpulkan dan digunakan sebagai bahan pembanding.
- 7) Pengecekan anggota, dilakukan untuk pemerikasaan derajat kepercayaan yang dicek meliputi: data, kategori analitis, penafsiran, dan kesimpulan¹⁰.

2. Kebergantungan (Dependability)

Kebergantungan (*dependability*) menurut istilah konvensional disebut "*reliability*" atau reliabilitas. Hal ini dilakukan melalui suatu cara yang disebut dengan "*audit trail*". Kata "Audit" artinya pemeriksaan pembukuan oleh seorang ahli untuk memeriksa ketelitian pembukuan, dan kemudian mengkonnfirmasikan serta menjamin kebenarannya, bila ternyata memang benar. "*Trail*" artinya jelek yang dapat dilacak¹¹.

¹⁰ Moleong. (2000).

¹¹ Nasution. (1988).

Dalam rangka penulisan skripsi, tesis atau desertasi "*audit trail*" dilakukan oleh pembimbing atau promotor, untuk itu peneliti dalam pemeriksaan *audit trail* harus menyediakan bahan-bahan sebagai berikut:

- data mentah, yaitu catatan lapangan sewaktu mengadakan observasi dan wawancara, hasil rekaman bila ada, dokumen, dan lain-lain yang telah dioleh dalam bentuk laporan lapangan.
- Hasil analisis data, yaitu data berupa rangkuman, hipotesis kerja, konsepkonsep, dan sebagainya.
- Hasil sintesis data, yaitu data seperti tafsiran, kesimpulan, definisi, interrelasi data, thema, pola, hubungan dengan literature, dan laporan akhir.
- 4) Catatan mengenai proses yang digunakan, yaitu tentang metodelogi, disain, strategi, prosedur, rasional, usaha-usaha agar hasil penelitian terpercaya (*credibility, dependability* dan *conformability*) serta usaha sendiri melakuan *audit trail*¹².

b. Teknik Analisis data

Setelah keabsahan data sudah dipenuhi, selanjutnya melakukan analisis data. Analisis data dilakukan dengan cara:

1. Pengumupan data

Pengumpulan data dalam hal ini berupa data-data mentah dari hasil penelitian, seperti: hasil wawancara, dokumentasi, catatan lapangan dan sebagainya.

2. Reduksi data,

Setelah data terkumpul dari hasil pengamatan, wawancara, catatan lapangan, serta bahan-bahan data lain yang ditemukan di lapangan dikumpulkan dan diklasifikasikan dengan membuat catatan-catatan ringkasan, mengkode untuk menyesuaikan menurut hasil penelitian.

¹² Nasution. (1988).

3. Penyajian data (*display data*)

Data yang sudah dikelompokkan dan sudah disesuaikan dengan kodekodenya, kemudian disajikan dalam bentuk tulisan deskriptif agar mudah dipahami secara keseluruhan dan juga dapat menarik kesimpulan untuk melakukan penganalisisan dan penelitian selanjutnya.

4. Kesimpulan atau Verifikasi

Hasil penelitian yang telah terkumpul dan terangkum harus diulang kembali dengan mencocokkan pada reduksi data dan *display data*, agar kesimpulan yang telah dikaji dapat disepakati untuk ditulis sebagai laporan yang memiliki tingkat kepercayaan yang benar¹³.

Hasil komponen-komponen tersebut dapat digambarkan sebagai berikut:

Gambar Komponen-Komponen Analisis Data Model Interaktif dari Miles dan Huberman (1992)

IV. Penutup

Teknik analisis data yang telah disusun ini, masih banyak kekurang yang masih perlu direvisi kembali, di mana dalam analisis data untuk kuatitatif masih banyak model analisis yang perlu digunakan dalam penelitian tidak hanya terbatas pada hasil penyusunan ini, begitu juga dengan analisis kualitatifnya. Dengan demikian, penyusun mohon maaf jika dalam

¹³ Miles & Huberman. (1992).

penyususun tersebut masih kekeliruan dan kekurang baik bahasa, teknik penulisan, dan literatur yang digunakan.

DAFTAR PUSTAKA

Hartono. (2004). Statistik untuk Penelitian. Yogyakarta: LSFK₂P.

- Kelinbaum, D.G., kupper, L.L., & Muller, K.E. (1998). *Applied Regression Analysis and Other Multivariable Methods*. New York: Duxbury Press. ITP (An International Thomson Publishing Company).
- Kirk, Roger E. (1995). *Experimental Design Procedural Sciences*. New York: Brooks/Cole. ITP (An International Thomson Publishing Company).
- Mason, R.D. Lind, D.A. & Marchal, W.G. (1994). *Statistic an Introduction* (*Second edition*). New York: Harcourt Brace Jovanovich Publishing.
- Matthew B. Miles dan A. Michael Huberman (1992). Qualitative data Analysis. Diterjemahkan oleh Tjetjep Rohendi Rohidi; pendamping Mulyarto. Jakarta: Penerbit Universitas Indonesia. (Buku asli diterbitkan tahun 1984).
- Moleong, Lexy J. (2000). *Metode Penelitian Kualitatif*. Bandung: Remaja Rosdakarya.
- Nasution. (1988). Metode Penelitian Kualitatif. Bandung: Tarsito.
- Siegel, Sitney. (1994). *Nonparametric Statistic for Behavioral Sciences*. Telah ditafsirkan oleh M.Sudrajat SW. Bandung: Armico.
- Sudjana. (1996). Metode Statistika (edisi ke 6). Bandung: Tarsito.

Sugiyono. (2000). Statistik untuk Penelitian (cetakan ke 3). Bandung: Alfabeta.

. (2004). Statistik Nonparametrik (edisi ke 4). Bandung: CV Alfabeta.

Sutrisno Hadi. (1995). Analisis Regresi (cetakan ke 5). Yogyakarta: Andi Offset.

Walpole, Ronal E. (1993). Pengantar Statistik (edisi ke 3). Telah diterjemahkan dalam bahasa Indonesia oleh Ir. Bambang Sumantri, judul aslinya Indroduction to statistic. (1982). Jakarta: Gramedia Pustaka Utama.